/* Single-precision floating point 2^x. Copyright (C) 1997-2015 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Geoffrey Keating The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* The basic design here is from Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft., 17 (1), March 1991, pp. 26-45. It has been slightly modified to compute 2^x instead of e^x, and for single-precision. */ #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include #include #include #include #include #include #include "t_exp2f.h" static const volatile float TWOM100 = 7.88860905e-31; static const volatile float TWO127 = 1.7014118346e+38; float __ieee754_exp2f (float x) { static const float himark = (float) FLT_MAX_EXP; static const float lomark = (float) (FLT_MIN_EXP - FLT_MANT_DIG - 1); /* Check for usual case. */ if (isless (x, himark) && isgreaterequal (x, lomark)) { static const float THREEp14 = 49152.0; int tval, unsafe; float rx, x22, result; union ieee754_float ex2_u, scale_u; if (fabsf (x) < FLT_EPSILON / 4.0f) return 1.0f + x; { SET_RESTORE_ROUND_NOEXF (FE_TONEAREST); /* 1. Argument reduction. Choose integers ex, -128 <= t < 128, and some real -1/512 <= x1 <= 1/512 so that x = ex + t/512 + x1. First, calculate rx = ex + t/256. */ rx = x + THREEp14; rx -= THREEp14; x -= rx; /* Compute x=x1. */ /* Compute tval = (ex*256 + t)+128. Now, t = (tval mod 256)-128 and ex=tval/256 [that's mod, NOT %; and /-round-to-nearest not the usual c integer /]. */ tval = (int) (rx * 256.0f + 128.0f); /* 2. Adjust for accurate table entry. Find e so that x = ex + t/256 + e + x2 where -7e-4 < e < 7e-4, and (float)(2^(t/256+e)) is accurate to one part in 2^-64. */ /* 'tval & 255' is the same as 'tval%256' except that it's always positive. Compute x = x2. */ x -= __exp2f_deltatable[tval & 255]; /* 3. Compute ex2 = 2^(t/255+e+ex). */ ex2_u.f = __exp2f_atable[tval & 255]; tval >>= 8; /* x2 is an integer multiple of 2^-30; avoid intermediate underflow from the calculation of x22 * x. */ unsafe = abs(tval) >= -FLT_MIN_EXP - 32; ex2_u.ieee.exponent += tval >> unsafe; scale_u.f = 1.0; scale_u.ieee.exponent += tval - (tval >> unsafe); /* 4. Approximate 2^x2 - 1, using a second-degree polynomial, with maximum error in [-2^-9 - 2^-14, 2^-9 + 2^-14] less than 1.3e-10. */ x22 = (.24022656679f * x + .69314736128f) * ex2_u.f; } /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex). */ result = x22 * x + ex2_u.f; if (!unsafe) return result; else { result *= scale_u.f; if (result < FLT_MIN) { float force_underflow = result * result; math_force_eval (force_underflow); } return result; } } /* Exceptional cases: */ else if (isless (x, himark)) { if (__isinf_nsf (x)) /* e^-inf == 0, with no error. */ return 0; else /* Underflow */ return TWOM100 * TWOM100; } else /* Return x, if x is a NaN or Inf; or overflow, otherwise. */ return TWO127*x; } strong_alias (__ieee754_exp2f, __exp2f_finite)