/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2014 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /*************************************************************************/ /* MODULE_NAME:slowpow.c */ /* */ /* FUNCTION:slowpow */ /* */ /*FILES NEEDED:mpa.h */ /* mpa.c mpexp.c mplog.c halfulp.c */ /* */ /* Given two IEEE double machine numbers y,x , routine computes the */ /* correctly rounded (to nearest) value of x^y. Result calculated by */ /* multiplication (in halfulp.c) or if result isn't accurate enough */ /* then routine converts x and y into multi-precision doubles and */ /* calls to mpexp routine */ /*************************************************************************/ #include "mpa.h" #include #include #ifndef SECTION # define SECTION #endif void __mpexp (mp_no *x, mp_no *y, int p); void __mplog (mp_no *x, mp_no *y, int p); double ulog (double); double __halfulp (double x, double y); double SECTION __slowpow (double x, double y, double z) { double res, res1; mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1; static const mp_no eps = {-3, {1.0, 4.0}}; int p; /* __HALFULP returns -10 or X^Y. */ res = __halfulp (x, y); /* Return if the result was computed by __HALFULP. */ if (res >= 0) return res; /* Compute pow as long double. This is currently only used by powerpc, where one may get 106 bits of accuracy. */ #ifdef USE_LONG_DOUBLE_FOR_MP long double ldw, ldz, ldpp; static const long double ldeps = 0x4.0p-96; ldz = __ieee754_logl ((long double) x); ldw = (long double) y *ldz; ldpp = __ieee754_expl (ldw); res = (double) (ldpp + ldeps); res1 = (double) (ldpp - ldeps); /* Return the result if it is accurate enough. */ if (res == res1) return res; #endif /* Or else, calculate using multiple precision. P = 10 implies accuracy of 240 bits accuracy, since MP_NO has a radix of 2^24. */ p = 10; __dbl_mp (x, &mpx, p); __dbl_mp (y, &mpy, p); __dbl_mp (z, &mpz, p); /* z = x ^ y log (z) = y * log (x) z = exp (y * log (x)) */ __mplog (&mpx, &mpz, p); __mul (&mpy, &mpz, &mpw, p); __mpexp (&mpw, &mpp, p); /* Add and subtract EPS to ensure that the result remains unchanged, i.e. we have last bit accuracy. */ __add (&mpp, &eps, &mpr, p); __mp_dbl (&mpr, &res, p); __sub (&mpp, &eps, &mpr1, p); __mp_dbl (&mpr1, &res1, p); if (res == res1) { /* Track how often we get to the slow pow code plus its input/output values. */ LIBC_PROBE (slowpow_p10, 4, &x, &y, &z, &res); return res; } /* If we don't, then we repeat using a higher precision. 768 bits of precision ought to be enough for anybody. */ p = 32; __dbl_mp (x, &mpx, p); __dbl_mp (y, &mpy, p); __dbl_mp (z, &mpz, p); __mplog (&mpx, &mpz, p); __mul (&mpy, &mpz, &mpw, p); __mpexp (&mpw, &mpp, p); __mp_dbl (&mpp, &res, p); /* Track how often we get to the uber-slow pow code plus its input/output values. */ LIBC_PROBE (slowpow_p32, 4, &x, &y, &z, &res); return res; }