/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /*************************************************************************/ /* MODULE_NAME:slowpow.c */ /* */ /* FUNCTION:slowpow */ /* */ /*FILES NEEDED:mpa.h */ /* mpa.c mpexp.c mplog.c halfulp.c */ /* */ /* Given two IEEE double machine numbers y,x , routine computes the */ /* correctly rounded (to nearest) value of x^y. Result calculated by */ /* multiplication (in halfulp.c) or if result isn't accurate enough */ /* then routine converts x and y into multi-precision doubles and */ /* calls to mpexp routine */ /*************************************************************************/ #include "mpa.h" #include "math_private.h" void __mpexp(mp_no *x, mp_no *y, int p); void __mplog(mp_no *x, mp_no *y, int p); double ulog(double); double __halfulp(double x,double y); double __slowpow(double x, double y, double z) { double res,res1; mp_no mpx, mpy, mpz,mpw,mpp,mpr,mpr1; static const mp_no eps = {-3,{1.0,4.0}}; int p; res = __halfulp(x,y); /* halfulp() returns -10 or x^y */ if (res >= 0) return res; /* if result was really computed by halfulp */ /* else, if result was not really computed by halfulp */ p = 10; /* p=precision */ __dbl_mp(x,&mpx,p); __dbl_mp(y,&mpy,p); __dbl_mp(z,&mpz,p); __mplog(&mpx, &mpz, p); /* log(x) = z */ __mul(&mpy,&mpz,&mpw,p); /* y * z =w */ __mpexp(&mpw, &mpp, p); /* e^w =pp */ __add(&mpp,&eps,&mpr,p); /* pp+eps =r */ __mp_dbl(&mpr, &res, p); __sub(&mpp,&eps,&mpr1,p); /* pp -eps =r1 */ __mp_dbl(&mpr1, &res1, p); /* converting into double precision */ if (res == res1) return res; p = 32; /* if we get here result wasn't calculated exactly, continue */ __dbl_mp(x,&mpx,p); /* for more exact calculation */ __dbl_mp(y,&mpy,p); __dbl_mp(z,&mpz,p); __mplog(&mpx, &mpz, p); /* log(c)=z */ __mul(&mpy,&mpz,&mpw,p); /* y*z =w */ __mpexp(&mpw, &mpp, p); /* e^w=pp */ __mp_dbl(&mpp, &res, p); /* converting into double precision */ return res; }