/* * IBM Accurate Mathematical Library * Copyright (c) International Business Machines Corp., 2001 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /****************************************************************/ /* MODULE_NAME: sincos32.c */ /* */ /* FUNCTIONS: ss32 */ /* cc32 */ /* c32 */ /* sin32 */ /* cos32 */ /* mpsin */ /* mpcos */ /* mpranred */ /* mpsin1 */ /* mpcos1 */ /* */ /* FILES NEEDED: endian.h mpa.h sincos32.h */ /* mpa.c */ /* */ /* Multi Precision sin() and cos() function with p=32 for sin()*/ /* cos() arcsin() and arccos() routines */ /* In addition mpranred() routine performs range reduction of */ /* a double number x into multi precision number y, */ /* such that y=x-n*pi/2, abs(y)1.0;a-=2.0) { mpk.d[1]=a*(a-1.0); mul(&gor,&mpk,&mpt1,p); cpy(&mpt1,&gor,p); mul(&x2,&sum,&mpt1,p); sub(&gor,&mpt1,&sum,p); } mul(x,&sum,y,p); } /**********************************************************************/ /* Compute Multi-Precision cos() function for given p. Receive Multi */ /* Precision number x and result stored at y */ /**********************************************************************/ static void cc32(mp_no *x, mp_no *y, int p) { int i; double a; #if 0 double b; static const mp_no mpone = {1,{1.0,1.0}}; #endif mp_no mpt1,x2,gor,sum ,mpk={1,{1.0}}; #if 0 mp_no mpt2; #endif for (i=1;i<=p;i++) mpk.d[i]=0; mul(x,x,&x2,p); mpk.d[1]=27.0; mul(&oofac27,&mpk,&gor,p); cpy(&gor,&sum,p); for (a=26.0;a>2.0;a-=2.0) { mpk.d[1]=a*(a-1.0); mul(&gor,&mpk,&mpt1,p); cpy(&mpt1,&gor,p); mul(&x2,&sum,&mpt1,p); sub(&gor,&mpt1,&sum,p); } mul(&x2,&sum,y,p); } /***************************************************************************/ /* c32() computes both sin(x), cos(x) as Multi precision numbers */ /***************************************************************************/ void __c32(mp_no *x, mp_no *y, mp_no *z, int p) { static const mp_no mpt={1,{1.0,2.0}}, one={1,{1.0,1.0}}; mp_no u,t,t1,t2,c,s; int i; cpy(x,&u,p); u.e=u.e-1; cc32(&u,&c,p); ss32(&u,&s,p); for (i=0;i<24;i++) { mul(&c,&s,&t,p); sub(&s,&t,&t1,p); add(&t1,&t1,&s,p); sub(&mpt,&c,&t1,p); mul(&t1,&c,&t2,p); add(&t2,&t2,&c,p); } sub(&one,&c,y,p); cpy(&s,z,p); } /************************************************************************/ /*Routine receive double x and two double results of sin(x) and return */ /*result which is more accurate */ /*Computing sin(x) with multi precision routine c32 */ /************************************************************************/ double __sin32(double x, double res, double res1) { int p; mp_no a,b,c; p=32; dbl_mp(res,&a,p); dbl_mp(0.5*(res1-res),&b,p); add(&a,&b,&c,p); if (x>0.8) { sub(&hp,&c,&a,p); __c32(&a,&b,&c,p); } else __c32(&c,&a,&b,p); /* b=sin(0.5*(res+res1)) */ dbl_mp(x,&c,p); /* c = x */ sub(&b,&c,&a,p); /* if a>0 return min(res,res1), otherwise return max(res,res1) */ if (a.d[0]>0) return (resres1)?res:res1; } /************************************************************************/ /*Routine receive double x and two double results of cos(x) and return */ /*result which is more accurate */ /*Computing cos(x) with multi precision routine c32 */ /************************************************************************/ double __cos32(double x, double res, double res1) { int p; mp_no a,b,c; p=32; dbl_mp(res,&a,p); dbl_mp(0.5*(res1-res),&b,p); add(&a,&b,&c,p); if (x>2.4) { sub(&pi,&c,&a,p); __c32(&a,&b,&c,p); b.d[0]=-b.d[0]; } else if (x>0.8) { sub(&hp,&c,&a,p); __c32(&a,&c,&b,p); } else __c32(&c,&b,&a,p); /* b=cos(0.5*(res+res1)) */ dbl_mp(x,&c,p); /* c = x */ sub(&b,&c,&a,p); /* if a>0 return max(res,res1), otherwise return min(res,res1) */ if (a.d[0]>0) return (res>res1)?res:res1; else return (res0.8) { sub(&hp,&c,&a,p); __c32(&a,&b,&c,p); } else __c32(&c,&a,&b,p); /* b = sin(x+dx) */ __mp_dbl(&b,&y,p); return y; } /*******************************************************************/ /* Compute cos()of double-length number (x+dx) as Multi Precision */ /* number and return result as double */ /*******************************************************************/ double __mpcos(double x, double dx) { int p; double y; mp_no a,b,c; p=32; dbl_mp(x,&a,p); dbl_mp(dx,&b,p); add(&a,&b,&c,p); if (x>0.8) { sub(&hp,&c,&b,p); __c32(&b,&a,&c,p); } else __c32(&c,&a,&b,p); /* a = cos(x+dx) */ __mp_dbl(&a,&y,p); return y; } /******************************************************************/ /* mpranred() performs range reduction of a double number x into */ /* multi precision number y, such that y=x-n*pi/2, abs(y)= 8388608.0) { t +=1.0; sub(&c,&one,&b,p); mul(&b,&hp,y,p); } else mul(&c,&hp,y,p); n = (int) t; if (x < 0) { y->d[0] = - y->d[0]; n = -n; } return (n&3); } } /*******************************************************************/ /* Multi-Precision sin() function subroutine, for p=32. It is */ /* based on the routines mpranred() and c32(). */ /*******************************************************************/ double mpsin1(double x) { int p; int n; mp_no u,s,c; double y; p=32; n=mpranred(x,&u,p); /* n is 0, 1, 2 or 3 */ __c32(&u,&c,&s,p); switch (n) { /* in which quarter of unit circle y is*/ case 0: __mp_dbl(&s,&y,p); return y; break; case 2: __mp_dbl(&s,&y,p); return -y; break; case 1: __mp_dbl(&c,&y,p); return y; break; case 3: __mp_dbl(&c,&y,p); return -y; break; } return 0; /* unreachable, to make the compiler happy */ } /*****************************************************************/ /* Multi-Precision cos() function subroutine, for p=32. It is */ /* based on the routines mpranred() and c32(). */ /*****************************************************************/ double mpcos1(double x) { int p; int n; mp_no u,s,c; double y; p=32; n=mpranred(x,&u,p); /* n is 0, 1, 2 or 3 */ __c32(&u,&c,&s,p); switch (n) { /* in what quarter of unit circle y is*/ case 0: __mp_dbl(&c,&y,p); return y; break; case 2: __mp_dbl(&c,&y,p); return -y; break; case 1: __mp_dbl(&s,&y,p); return -y; break; case 3: __mp_dbl(&s,&y,p); return y; break; } return 0; /* unreachable, to make the compiler happy */ } /******************************************************************/