/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2013 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /****************************************************************************/ /* */ /* MODULE_NAME:usncs.c */ /* */ /* FUNCTIONS: usin */ /* ucos */ /* slow */ /* slow1 */ /* slow2 */ /* sloww */ /* sloww1 */ /* sloww2 */ /* bsloww */ /* bsloww1 */ /* bsloww2 */ /* cslow2 */ /* csloww */ /* csloww1 */ /* csloww2 */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */ /* branred.c sincos32.c dosincos.c mpa.c */ /* sincos.tbl */ /* */ /* An ultimate sin and routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /****************************************************************************/ #include #include "endian.h" #include "mydefs.h" #include "usncs.h" #include "MathLib.h" #include #include #ifndef SECTION # define SECTION #endif extern const union { int4 i[880]; double x[440]; } __sincostab attribute_hidden; static const double sn3 = -1.66666666666664880952546298448555E-01, sn5 = 8.33333214285722277379541354343671E-03, cs2 = 4.99999999999999999999950396842453E-01, cs4 = -4.16666666666664434524222570944589E-02, cs6 = 1.38888874007937613028114285595617E-03; void __dubsin (double x, double dx, double w[]); void __docos (double x, double dx, double w[]); double __mpsin (double x, double dx); double __mpcos (double x, double dx); double __mpsin1 (double x); double __mpcos1 (double x); static double slow (double x); static double slow1 (double x); static double slow2 (double x); static double sloww (double x, double dx, double orig); static double sloww1 (double x, double dx, double orig); static double sloww2 (double x, double dx, double orig, int n); static double bsloww (double x, double dx, double orig, int n); static double bsloww1 (double x, double dx, double orig, int n); static double bsloww2 (double x, double dx, double orig, int n); int __branred (double x, double *a, double *aa); static double cslow2 (double x); static double csloww (double x, double dx, double orig); static double csloww1 (double x, double dx, double orig); static double csloww2 (double x, double dx, double orig, int n); /* Reduce range of X and compute sin of a + da. K is the amount by which to rotate the quadrants. This allows us to use the same routine to compute cos by simply rotating the quadrants by 1. */ static inline double __always_inline reduce_and_compute (double x, double a, double da, unsigned int k) { double retval = 0; unsigned int n = __branred (x, &a, &da); k = (n + k) % 4; switch (k) { case 0: if (a * a < 0.01588) retval = bsloww (a, da, x, n); else retval = bsloww1 (a, da, x, n); break; case 2: if (a * a < 0.01588) retval = bsloww (-a, -da, x, n); else retval = bsloww1 (-a, -da, x, n); break; case 1: case 3: retval = bsloww2 (a, da, x, n); break; } return retval; } /*******************************************************************/ /* An ultimate sin routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of sin(x) */ /*******************************************************************/ double SECTION __sin (double x) { double xx, res, t, cor, y, s, c, sn, ssn, cs, ccs, xn, a, da, db, eps, xn1, xn2; mynumber u, v; int4 k, m, n; double retval = 0; SET_RESTORE_ROUND_53BIT (FE_TONEAREST); u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff & m; /* no sign */ if (k < 0x3e500000) /* if x->0 =>sin(x)=x */ retval = x; /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/ else if (k < 0x3fd00000) { xx = x * x; /*Taylor series. */ t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + s1.x) * (xx * x)); res = x + t; cor = (x - res) + t; retval = (res == res + 1.07 * cor) ? res : slow (x); } /* else if (k < 0x3fd00000) */ /*---------------------------- 0.25<|x|< 0.855469---------------------- */ else if (k < 0x3feb6000) { u.x = (m > 0) ? big.x + x : big.x - x; y = (m > 0) ? x - (u.x - big.x) : x + (u.x - big.x); xx = y * y; s = y + y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = (m > 0) ? __sincostab.x[k] : -__sincostab.x[k]; ssn = (m > 0) ? __sincostab.x[k + 1] : -__sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; cor = (ssn + s * ccs - sn * c) + cs * s; res = sn + cor; cor = (sn - res) + cor; retval = (res == res + 1.096 * cor) ? res : slow1 (x); } /* else if (k < 0x3feb6000) */ /*----------------------- 0.855469 <|x|<2.426265 ----------------------*/ else if (k < 0x400368fd) { y = (m > 0) ? hp0.x - x : hp0.x + x; if (y >= 0) { u.x = big.x + y; y = (y - (u.x - big.x)) + hp1.x; } else { u.x = big.x - y; y = (-hp1.x) - (y + (u.x - big.x)); } xx = y * y; s = y + y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; cor = (ccs - s * ssn - cs * c) - sn * s; res = cs + cor; cor = (cs - res) + cor; retval = (res == res + 1.020 * cor) ? ((m > 0) ? res : -res) : slow2 (x); } /* else if (k < 0x400368fd) */ /*-------------------------- 2.426265<|x|< 105414350 ----------------------*/ else if (k < 0x419921FB) { t = (x * hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (x - xn * mp1.x) - xn * mp2.x; n = v.i[LOW_HALF] & 3; da = xn * mp3.x; a = y - da; da = (y - a) - da; eps = ABS (x) * 1.2e-30; switch (n) { /* quarter of unit circle */ case 0: case 2: xx = a * a; if (n) { a = -a; da = -da; } if (xx < 0.01588) { /*Taylor series */ t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + s1.x) * a - 0.5 * da) * xx + da; res = a + t; cor = (a - res) + t; cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps; retval = (res == res + cor) ? res : sloww (a, da, x); } else { if (a > 0) { m = 1; t = a; db = da; } else { m = 0; t = -a; db = -da; } u.x = big.x + t; y = t - (u.x - big.x); xx = y * y; s = y + (db + y * xx * (sn3 + xx * sn5)); c = y * db + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; cor = (ssn + s * ccs - sn * c) + cs * s; res = sn + cor; cor = (sn - res) + cor; cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps; retval = ((res == res + cor) ? ((m) ? res : -res) : sloww1 (a, da, x)); } break; case 1: case 3: if (a < 0) { a = -a; da = -da; } u.x = big.x + a; y = a - (u.x - big.x) + da; xx = y * y; k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; s = y + y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); cor = (ccs - s * ssn - cs * c) - sn * s; res = cs + cor; cor = (cs - res) + cor; cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps; retval = ((res == res + cor) ? ((n & 2) ? -res : res) : sloww2 (a, da, x, n)); break; } } /* else if (k < 0x419921FB ) */ /*---------------------105414350 <|x|< 281474976710656 --------------------*/ else if (k < 0x42F00000) { t = (x * hpinv.x + toint.x); xn = t - toint.x; v.x = t; xn1 = (xn + 8.0e22) - 8.0e22; xn2 = xn - xn1; y = ((((x - xn1 * mp1.x) - xn1 * mp2.x) - xn2 * mp1.x) - xn2 * mp2.x); n = v.i[LOW_HALF] & 3; da = xn1 * pp3.x; t = y - da; da = (y - t) - da; da = (da - xn2 * pp3.x) - xn * pp4.x; a = t + da; da = (t - a) + da; eps = 1.0e-24; switch (n) { case 0: case 2: xx = a * a; if (n) { a = -a; da = -da; } if (xx < 0.01588) { /* Taylor series */ t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + s1.x) * a - 0.5 * da) * xx + da; res = a + t; cor = (a - res) + t; cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps; retval = (res == res + cor) ? res : bsloww (a, da, x, n); } else { if (a > 0) { m = 1; t = a; db = da; } else { m = 0; t = -a; db = -da; } u.x = big.x + t; y = t - (u.x - big.x); xx = y * y; s = y + (db + y * xx * (sn3 + xx * sn5)); c = y * db + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; cor = (ssn + s * ccs - sn * c) + cs * s; res = sn + cor; cor = (sn - res) + cor; cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps; retval = ((res == res + cor) ? ((m) ? res : -res) : bsloww1 (a, da, x, n)); } break; case 1: case 3: if (a < 0) { a = -a; da = -da; } u.x = big.x + a; y = a - (u.x - big.x) + da; xx = y * y; k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; s = y + y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); cor = (ccs - s * ssn - cs * c) - sn * s; res = cs + cor; cor = (cs - res) + cor; cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps; retval = ((res == res + cor) ? ((n & 2) ? -res : res) : bsloww2 (a, da, x, n)); break; } } /* else if (k < 0x42F00000 ) */ /* -----------------281474976710656 <|x| <2^1024----------------------------*/ else if (k < 0x7ff00000) retval = reduce_and_compute (x, a, da, 0); /*--------------------- |x| > 2^1024 ----------------------------------*/ else { if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) __set_errno (EDOM); retval = x / x; } return retval; } /*******************************************************************/ /* An ultimate cos routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of cos(x) */ /*******************************************************************/ double SECTION __cos (double x) { double y, xx, res, t, cor, s, c, sn, ssn, cs, ccs, xn, a, da, db, eps, xn1, xn2; mynumber u, v; int4 k, m, n; double retval = 0; SET_RESTORE_ROUND_53BIT (FE_TONEAREST); u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff & m; /* |x|<2^-27 => cos(x)=1 */ if (k < 0x3e400000) retval = 1.0; else if (k < 0x3feb6000) { /* 2^-27 < |x| < 0.855469 */ y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); xx = y * y; s = y + y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; cor = (ccs - s * ssn - cs * c) - sn * s; res = cs + cor; cor = (cs - res) + cor; retval = (res == res + 1.020 * cor) ? res : cslow2 (x); } /* else if (k < 0x3feb6000) */ else if (k < 0x400368fd) { /* 0.855469 <|x|<2.426265 */ ; y = hp0.x - ABS (x); a = y + hp1.x; da = (y - a) + hp1.x; xx = a * a; if (xx < 0.01588) { t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + s1.x) * a - 0.5 * da) * xx + da; res = a + t; cor = (a - res) + t; cor = (cor > 0) ? 1.02 * cor + 1.0e-31 : 1.02 * cor - 1.0e-31; retval = (res == res + cor) ? res : csloww (a, da, x); } else { if (a > 0) { m = 1; t = a; db = da; } else { m = 0; t = -a; db = -da; } u.x = big.x + t; y = t - (u.x - big.x); xx = y * y; s = y + (db + y * xx * (sn3 + xx * sn5)); c = y * db + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; cor = (ssn + s * ccs - sn * c) + cs * s; res = sn + cor; cor = (sn - res) + cor; cor = (cor > 0) ? 1.035 * cor + 1.0e-31 : 1.035 * cor - 1.0e-31; retval = ((res == res + cor) ? ((m) ? res : -res) : csloww1 (a, da, x)); } } /* else if (k < 0x400368fd) */ else if (k < 0x419921FB) { /* 2.426265<|x|< 105414350 */ t = (x * hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (x - xn * mp1.x) - xn * mp2.x; n = v.i[LOW_HALF] & 3; da = xn * mp3.x; a = y - da; da = (y - a) - da; eps = ABS (x) * 1.2e-30; switch (n) { case 1: case 3: xx = a * a; if (n == 1) { a = -a; da = -da; } if (xx < 0.01588) { t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + s1.x) * a - 0.5 * da) * xx + da; res = a + t; cor = (a - res) + t; cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps; retval = (res == res + cor) ? res : csloww (a, da, x); } else { if (a > 0) { m = 1; t = a; db = da; } else { m = 0; t = -a; db = -da; } u.x = big.x + t; y = t - (u.x - big.x); xx = y * y; s = y + (db + y * xx * (sn3 + xx * sn5)); c = y * db + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; cor = (ssn + s * ccs - sn * c) + cs * s; res = sn + cor; cor = (sn - res) + cor; cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps; retval = ((res == res + cor) ? ((m) ? res : -res) : csloww1 (a, da, x)); } break; case 0: case 2: if (a < 0) { a = -a; da = -da; } u.x = big.x + a; y = a - (u.x - big.x) + da; xx = y * y; k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; s = y + y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); cor = (ccs - s * ssn - cs * c) - sn * s; res = cs + cor; cor = (cs - res) + cor; cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps; retval = ((res == res + cor) ? ((n) ? -res : res) : csloww2 (a, da, x, n)); break; } } /* else if (k < 0x419921FB ) */ else if (k < 0x42F00000) { t = (x * hpinv.x + toint.x); xn = t - toint.x; v.x = t; xn1 = (xn + 8.0e22) - 8.0e22; xn2 = xn - xn1; y = ((((x - xn1 * mp1.x) - xn1 * mp2.x) - xn2 * mp1.x) - xn2 * mp2.x); n = v.i[LOW_HALF] & 3; da = xn1 * pp3.x; t = y - da; da = (y - t) - da; da = (da - xn2 * pp3.x) - xn * pp4.x; a = t + da; da = (t - a) + da; eps = 1.0e-24; switch (n) { case 1: case 3: xx = a * a; if (n == 1) { a = -a; da = -da; } if (xx < 0.01588) { t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + s1.x) * a - 0.5 * da) * xx + da; res = a + t; cor = (a - res) + t; cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps; retval = (res == res + cor) ? res : bsloww (a, da, x, n); } else { if (a > 0) { m = 1; t = a; db = da; } else { m = 0; t = -a; db = -da; } u.x = big.x + t; y = t - (u.x - big.x); xx = y * y; s = y + (db + y * xx * (sn3 + xx * sn5)); c = y * db + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; cor = (ssn + s * ccs - sn * c) + cs * s; res = sn + cor; cor = (sn - res) + cor; cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps; retval = ((res == res + cor) ? ((m) ? res : -res) : bsloww1 (a, da, x, n)); } break; case 0: case 2: if (a < 0) { a = -a; da = -da; } u.x = big.x + a; y = a - (u.x - big.x) + da; xx = y * y; k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; s = y + y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); cor = (ccs - s * ssn - cs * c) - sn * s; res = cs + cor; cor = (cs - res) + cor; cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps; retval = ((res == res + cor) ? ((n) ? -res : res) : bsloww2 (a, da, x, n)); break; } } /* else if (k < 0x42F00000 ) */ /* 281474976710656 <|x| <2^1024 */ else if (k < 0x7ff00000) retval = reduce_and_compute (x, a, da, 1); else { if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) __set_errno (EDOM); retval = x / x; /* |x| > 2^1024 */ } return retval; } /************************************************************************/ /* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */ /* precision and if still doesn't accurate enough by mpsin or dubsin */ /************************************************************************/ static double SECTION slow (double x) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y, x1, x2, xx, r, t, res, cor, w[2]; x1 = (x + th2_36) - th2_36; y = aa.x * x1 * x1 * x1; r = x + y; x2 = x - x1; xx = x * x; t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + bb.x) * xx + 3.0 * aa.x * x1 * x2) * x + aa.x * x2 * x2 * x2; t = ((x - r) + y) + t; res = r + t; cor = (r - res) + t; if (res == res + 1.0007 * cor) return res; else { __dubsin (ABS (x), 0, w); if (w[0] == w[0] + 1.000000001 * w[1]) return (x > 0) ? w[0] : -w[0]; else return (x > 0) ? __mpsin (x, 0) : -__mpsin (-x, 0); } } /*******************************************************************************/ /* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */ /* and if result still doesn't accurate enough by mpsin or dubsin */ /*******************************************************************************/ static double SECTION slow1 (double x) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, c1, c2, xx, cor, res; static const double t22 = 6291456.0; int4 k; y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); xx = y * y; s = y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; /* Data */ ssn = __sincostab.x[k + 1]; /* from */ cs = __sincostab.x[k + 2]; /* tables */ ccs = __sincostab.x[k + 3]; /* __sincostab.tbl */ y1 = (y + t22) - t22; y2 = y - y1; c1 = (cs + t22) - t22; c2 = (cs - c1) + ccs; cor = (ssn + s * ccs + cs * s + c2 * y + c1 * y2) - sn * c; y = sn + c1 * y1; cor = cor + ((sn - y) + c1 * y1); res = y + cor; cor = (y - res) + cor; if (res == res + 1.0005 * cor) return (x > 0) ? res : -res; else { __dubsin (ABS (x), 0, w); if (w[0] == w[0] + 1.000000005 * w[1]) return (x > 0) ? w[0] : -w[0]; else return (x > 0) ? __mpsin (x, 0) : -__mpsin (-x, 0); } } /**************************************************************************/ /* Routine compute sin(x) for 0.855469 <|x|<2.426265 by __sincostab.tbl */ /* and if result still doesn't accurate enough by mpsin or dubsin */ /**************************************************************************/ static double SECTION slow2 (double x) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, e1, e2, xx, cor, res, del; static const double t22 = 6291456.0; int4 k; y = ABS (x); y = hp0.x - y; if (y >= 0) { u.x = big.x + y; y = y - (u.x - big.x); del = hp1.x; } else { u.x = big.x - y; y = -(y + (u.x - big.x)); del = -hp1.x; } xx = y * y; s = y * xx * (sn3 + xx * sn5); c = y * del + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; y1 = (y + t22) - t22; y2 = (y - y1) + del; e1 = (sn + t22) - t22; e2 = (sn - e1) + ssn; cor = (ccs - cs * c - e1 * y2 - e2 * y) - sn * s; y = cs - e1 * y1; cor = cor + ((cs - y) - e1 * y1); res = y + cor; cor = (y - res) + cor; if (res == res + 1.0005 * cor) return (x > 0) ? res : -res; else { y = ABS (x) - hp0.x; y1 = y - hp1.x; y2 = (y - y1) - hp1.x; __docos (y1, y2, w); if (w[0] == w[0] + 1.000000005 * w[1]) return (x > 0) ? w[0] : -w[0]; else return (x > 0) ? __mpsin (x, 0) : -__mpsin (-x, 0); } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x is small enough*/ /* to use Taylor series around zero and (x+dx) */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of */ /* result.And if result not accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static double SECTION sloww (double x, double dx, double orig) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y, x1, x2, xx, r, t, res, cor, w[2], a, da, xn; union { int4 i[2]; double x; } v; int4 n; x1 = (x + th2_36) - th2_36; y = aa.x * x1 * x1 * x1; r = x + y; x2 = (x - x1) + dx; xx = x * x; t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + bb.x) * xx + 3.0 * aa.x * x1 * x2) * x + aa.x * x2 * x2 * x2 + dx; t = ((x - r) + y) + t; res = r + t; cor = (r - res) + t; cor = (cor > 0) ? 1.0005 * cor + ABS (orig) * 3.1e-30 : 1.0005 * cor - ABS (orig) * 3.1e-30; if (res == res + cor) return res; else { (x > 0) ? __dubsin (x, dx, w) : __dubsin (-x, -dx, w); if (w[1] > 0) cor = 1.000000001 * w[1] + ABS (orig) * 1.1e-30; else cor = 1.000000001 * w[1] - ABS (orig) * 1.1e-30; if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; else { t = (orig * hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (orig - xn * mp1.x) - xn * mp2.x; n = v.i[LOW_HALF] & 3; da = xn * pp3.x; t = y - da; da = (y - t) - da; y = xn * pp4.x; a = t - y; da = ((t - a) - y) + da; if (n & 2) { a = -a; da = -da; } (a > 0) ? __dubsin (a, da, w) : __dubsin (-a, -da, w); if (w[1] > 0) cor = 1.000000001 * w[1] + ABS (orig) * 1.1e-40; else cor = 1.000000001 * w[1] - ABS (orig) * 1.1e-40; if (w[0] == w[0] + cor) return (a > 0) ? w[0] : -w[0]; else return __mpsin1 (orig); } } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in first or */ /* third quarter of unit circle.Routine receive also (right argument) the */ /* original value of x for computing error of result.And if result not */ /* accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static double SECTION sloww1 (double x, double dx, double orig) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, c1, c2, xx, cor, res; static const double t22 = 6291456.0; int4 k; y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); dx = (x > 0) ? dx : -dx; xx = y * y; s = y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; y1 = (y + t22) - t22; y2 = (y - y1) + dx; c1 = (cs + t22) - t22; c2 = (cs - c1) + ccs; cor = (ssn + s * ccs + cs * s + c2 * y + c1 * y2 - sn * y * dx) - sn * c; y = sn + c1 * y1; cor = cor + ((sn - y) + c1 * y1); res = y + cor; cor = (y - res) + cor; if (cor > 0) cor = 1.0005 * cor + 3.1e-30 * ABS (orig); else cor = 1.0005 * cor - 3.1e-30 * ABS (orig); if (res == res + cor) return (x > 0) ? res : -res; else { __dubsin (ABS (x), dx, w); if (w[1] > 0) cor = 1.000000005 * w[1] + 1.1e-30 * ABS (orig); else cor = 1.000000005 * w[1] - 1.1e-30 * ABS (orig); if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; else return __mpsin1 (orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in second or */ /* fourth quarter of unit circle.Routine receive also the original value */ /* and quarter(n= 1or 3)of x for computing error of result.And if result not*/ /* accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static double SECTION sloww2 (double x, double dx, double orig, int n) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, e1, e2, xx, cor, res; static const double t22 = 6291456.0; int4 k; y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); dx = (x > 0) ? dx : -dx; xx = y * y; s = y * xx * (sn3 + xx * sn5); c = y * dx + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; y1 = (y + t22) - t22; y2 = (y - y1) + dx; e1 = (sn + t22) - t22; e2 = (sn - e1) + ssn; cor = (ccs - cs * c - e1 * y2 - e2 * y) - sn * s; y = cs - e1 * y1; cor = cor + ((cs - y) - e1 * y1); res = y + cor; cor = (y - res) + cor; if (cor > 0) cor = 1.0005 * cor + 3.1e-30 * ABS (orig); else cor = 1.0005 * cor - 3.1e-30 * ABS (orig); if (res == res + cor) return (n & 2) ? -res : res; else { __docos (ABS (x), dx, w); if (w[1] > 0) cor = 1.000000005 * w[1] + 1.1e-30 * ABS (orig); else cor = 1.000000005 * w[1] - 1.1e-30 * ABS (orig); if (w[0] == w[0] + cor) return (n & 2) ? -w[0] : w[0]; else return __mpsin1 (orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* is small enough to use Taylor series around zero and (x+dx) */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of */ /* result.And if result not accurate enough routine calls other routines */ /***************************************************************************/ static double SECTION bsloww (double x, double dx, double orig, int n) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y, x1, x2, xx, r, t, res, cor, w[2]; x1 = (x + th2_36) - th2_36; y = aa.x * x1 * x1 * x1; r = x + y; x2 = (x - x1) + dx; xx = x * x; t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + bb.x) * xx + 3.0 * aa.x * x1 * x2) * x + aa.x * x2 * x2 * x2 + dx; t = ((x - r) + y) + t; res = r + t; cor = (r - res) + t; cor = (cor > 0) ? 1.0005 * cor + 1.1e-24 : 1.0005 * cor - 1.1e-24; if (res == res + cor) return res; else { (x > 0) ? __dubsin (x, dx, w) : __dubsin (-x, -dx, w); if (w[1] > 0) cor = 1.000000001 * w[1] + 1.1e-24; else cor = 1.000000001 * w[1] - 1.1e-24; if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; else return (n & 1) ? __mpcos1 (orig) : __mpsin1 (orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of result.*/ /* And if result not accurate enough routine calls other routines */ /***************************************************************************/ static double SECTION bsloww1 (double x, double dx, double orig, int n) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, c1, c2, xx, cor, res; static const double t22 = 6291456.0; int4 k; y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); dx = (x > 0) ? dx : -dx; xx = y * y; s = y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; y1 = (y + t22) - t22; y2 = (y - y1) + dx; c1 = (cs + t22) - t22; c2 = (cs - c1) + ccs; cor = (ssn + s * ccs + cs * s + c2 * y + c1 * y2 - sn * y * dx) - sn * c; y = sn + c1 * y1; cor = cor + ((sn - y) + c1 * y1); res = y + cor; cor = (y - res) + cor; cor = (cor > 0) ? 1.0005 * cor + 1.1e-24 : 1.0005 * cor - 1.1e-24; if (res == res + cor) return (x > 0) ? res : -res; else { __dubsin (ABS (x), dx, w); if (w[1] > 0) cor = 1.000000005 * w[1] + 1.1e-24; else cor = 1.000000005 * w[1] - 1.1e-24; if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; else return (n & 1) ? __mpcos1 (orig) : __mpsin1 (orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* in second or fourth quarter of unit circle.Routine receive also the */ /* original value and quarter(n= 1or 3)of x for computing error of result. */ /* And if result not accurate enough routine calls other routines */ /***************************************************************************/ static double SECTION bsloww2 (double x, double dx, double orig, int n) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, e1, e2, xx, cor, res; static const double t22 = 6291456.0; int4 k; y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); dx = (x > 0) ? dx : -dx; xx = y * y; s = y * xx * (sn3 + xx * sn5); c = y * dx + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; y1 = (y + t22) - t22; y2 = (y - y1) + dx; e1 = (sn + t22) - t22; e2 = (sn - e1) + ssn; cor = (ccs - cs * c - e1 * y2 - e2 * y) - sn * s; y = cs - e1 * y1; cor = cor + ((cs - y) - e1 * y1); res = y + cor; cor = (y - res) + cor; cor = (cor > 0) ? 1.0005 * cor + 1.1e-24 : 1.0005 * cor - 1.1e-24; if (res == res + cor) return (n & 2) ? -res : res; else { __docos (ABS (x), dx, w); if (w[1] > 0) cor = 1.000000005 * w[1] + 1.1e-24; else cor = 1.000000005 * w[1] - 1.1e-24; if (w[0] == w[0] + cor) return (n & 2) ? -w[0] : w[0]; else return (n & 1) ? __mpsin1 (orig) : __mpcos1 (orig); } } /************************************************************************/ /* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more */ /* precision and if still doesn't accurate enough by mpcos or docos */ /************************************************************************/ static double SECTION cslow2 (double x) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, e1, e2, xx, cor, res; static const double t22 = 6291456.0; int4 k; y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); xx = y * y; s = y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; y1 = (y + t22) - t22; y2 = y - y1; e1 = (sn + t22) - t22; e2 = (sn - e1) + ssn; cor = (ccs - cs * c - e1 * y2 - e2 * y) - sn * s; y = cs - e1 * y1; cor = cor + ((cs - y) - e1 * y1); res = y + cor; cor = (y - res) + cor; if (res == res + 1.0005 * cor) return res; else { y = ABS (x); __docos (y, 0, w); if (w[0] == w[0] + 1.000000005 * w[1]) return w[0]; else return __mpcos (x, 0); } } /***************************************************************************/ /* Routine compute cos(x+dx) (Double-Length number) where x is small enough*/ /* to use Taylor series around zero and (x+dx) .Routine receive also */ /* (right argument) the original value of x for computing error of */ /* result.And if result not accurate enough routine calls other routines */ /***************************************************************************/ static double SECTION csloww (double x, double dx, double orig) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y, x1, x2, xx, r, t, res, cor, w[2], a, da, xn; union { int4 i[2]; double x; } v; int4 n; x1 = (x + th2_36) - th2_36; y = aa.x * x1 * x1 * x1; r = x + y; x2 = (x - x1) + dx; xx = x * x; /* Taylor series */ t = (((((s5.x * xx + s4.x) * xx + s3.x) * xx + s2.x) * xx + bb.x) * xx + 3.0 * aa.x * x1 * x2) * x + aa.x * x2 * x2 * x2 + dx; t = ((x - r) + y) + t; res = r + t; cor = (r - res) + t; if (cor > 0) cor = 1.0005 * cor + ABS (orig) * 3.1e-30; else cor = 1.0005 * cor - ABS (orig) * 3.1e-30; if (res == res + cor) return res; else { (x > 0) ? __dubsin (x, dx, w) : __dubsin (-x, -dx, w); if (w[1] > 0) cor = 1.000000001 * w[1] + ABS (orig) * 1.1e-30; else cor = 1.000000001 * w[1] - ABS (orig) * 1.1e-30; if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; else { t = (orig * hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (orig - xn * mp1.x) - xn * mp2.x; n = v.i[LOW_HALF] & 3; da = xn * pp3.x; t = y - da; da = (y - t) - da; y = xn * pp4.x; a = t - y; da = ((t - a) - y) + da; if (n == 1) { a = -a; da = -da; } (a > 0) ? __dubsin (a, da, w) : __dubsin (-a, -da, w); if (w[1] > 0) cor = 1.000000001 * w[1] + ABS (orig) * 1.1e-40; else cor = 1.000000001 * w[1] - ABS (orig) * 1.1e-40; if (w[0] == w[0] + cor) return (a > 0) ? w[0] : -w[0]; else return __mpcos1 (orig); } } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in first or */ /* third quarter of unit circle.Routine receive also (right argument) the */ /* original value of x for computing error of result.And if result not */ /* accurate enough routine calls other routines */ /***************************************************************************/ static double SECTION csloww1 (double x, double dx, double orig) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, c1, c2, xx, cor, res; static const double t22 = 6291456.0; int4 k; y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); dx = (x > 0) ? dx : -dx; xx = y * y; s = y * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; y1 = (y + t22) - t22; y2 = (y - y1) + dx; c1 = (cs + t22) - t22; c2 = (cs - c1) + ccs; cor = (ssn + s * ccs + cs * s + c2 * y + c1 * y2 - sn * y * dx) - sn * c; y = sn + c1 * y1; cor = cor + ((sn - y) + c1 * y1); res = y + cor; cor = (y - res) + cor; if (cor > 0) cor = 1.0005 * cor + 3.1e-30 * ABS (orig); else cor = 1.0005 * cor - 3.1e-30 * ABS (orig); if (res == res + cor) return (x > 0) ? res : -res; else { __dubsin (ABS (x), dx, w); if (w[1] > 0) cor = 1.000000005 * w[1] + 1.1e-30 * ABS (orig); else cor = 1.000000005 * w[1] - 1.1e-30 * ABS (orig); if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; else return __mpcos1 (orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in second or */ /* fourth quarter of unit circle.Routine receive also the original value */ /* and quarter(n= 1or 3)of x for computing error of result.And if result not*/ /* accurate enough routine calls other routines */ /***************************************************************************/ static double SECTION csloww2 (double x, double dx, double orig, int n) { mynumber u; double sn, ssn, cs, ccs, s, c, w[2], y, y1, y2, e1, e2, xx, cor, res; static const double t22 = 6291456.0; int4 k; y = ABS (x); u.x = big.x + y; y = y - (u.x - big.x); dx = (x > 0) ? dx : -dx; xx = y * y; s = y * xx * (sn3 + xx * sn5); c = y * dx + xx * (cs2 + xx * (cs4 + xx * cs6)); k = u.i[LOW_HALF] << 2; sn = __sincostab.x[k]; ssn = __sincostab.x[k + 1]; cs = __sincostab.x[k + 2]; ccs = __sincostab.x[k + 3]; y1 = (y + t22) - t22; y2 = (y - y1) + dx; e1 = (sn + t22) - t22; e2 = (sn - e1) + ssn; cor = (ccs - cs * c - e1 * y2 - e2 * y) - sn * s; y = cs - e1 * y1; cor = cor + ((cs - y) - e1 * y1); res = y + cor; cor = (y - res) + cor; if (cor > 0) cor = 1.0005 * cor + 3.1e-30 * ABS (orig); else cor = 1.0005 * cor - 3.1e-30 * ABS (orig); if (res == res + cor) return (n) ? -res : res; else { __docos (ABS (x), dx, w); if (w[1] > 0) cor = 1.000000005 * w[1] + 1.1e-30 * ABS (orig); else cor = 1.000000005 * w[1] - 1.1e-30 * ABS (orig); if (w[0] == w[0] + cor) return (n) ? -w[0] : w[0]; else return __mpcos1 (orig); } } #ifndef __cos weak_alias (__cos, cos) # ifdef NO_LONG_DOUBLE strong_alias (__cos, __cosl) weak_alias (__cos, cosl) # endif #endif #ifndef __sin weak_alias (__sin, sin) # ifdef NO_LONG_DOUBLE strong_alias (__sin, __sinl) weak_alias (__sin, sinl) # endif #endif