/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2018 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /****************************************************************************/ /* */ /* MODULE_NAME:usncs.c */ /* */ /* FUNCTIONS: usin */ /* ucos */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */ /* branred.c sincos.tbl */ /* */ /* An ultimate sin and cos routine. Given an IEEE double machine number x */ /* it computes sin(x) or cos(x) with ~0.55 ULP. */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /****************************************************************************/ #include #include #include "endian.h" #include "mydefs.h" #include "usncs.h" #include "MathLib.h" #include #include #include #include /* Helper macros to compute sin of the input values. */ #define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx)) #define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1) /* The computed polynomial is a variation of the Taylor series expansion for sin(a): a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2 The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so on. The result is returned to LHS. */ #define TAYLOR_SIN(xx, a, da) \ ({ \ double t = ((POLYNOMIAL (xx) * (a) - 0.5 * (da)) * (xx) + (da)); \ double res = (a) + t; \ res; \ }) #define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \ ({ \ int4 k = u.i[LOW_HALF] << 2; \ sn = __sincostab.x[k]; \ ssn = __sincostab.x[k + 1]; \ cs = __sincostab.x[k + 2]; \ ccs = __sincostab.x[k + 3]; \ }) #ifndef SECTION # define SECTION #endif extern const union { int4 i[880]; double x[440]; } __sincostab attribute_hidden; static const double sn3 = -1.66666666666664880952546298448555E-01, sn5 = 8.33333214285722277379541354343671E-03, cs2 = 4.99999999999999999999950396842453E-01, cs4 = -4.16666666666664434524222570944589E-02, cs6 = 1.38888874007937613028114285595617E-03; int __branred (double x, double *a, double *aa); /* Given a number partitioned into X and DX, this function computes the cosine of the number by combining the sin and cos of X (as computed by a variation of the Taylor series) with the values looked up from the sin/cos table to get the result. */ static inline double __always_inline do_cos (double x, double dx) { mynumber u; if (x < 0) dx = -dx; u.x = big + fabs (x); x = fabs (x) - (u.x - big) + dx; double xx, s, sn, ssn, c, cs, ccs, cor; xx = x * x; s = x + x * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); cor = (ccs - s * ssn - cs * c) - sn * s; return cs + cor; } /* Given a number partitioned into X and DX, this function computes the sine of the number by combining the sin and cos of X (as computed by a variation of the Taylor series) with the values looked up from the sin/cos table to get the result. */ static inline double __always_inline do_sin (double x, double dx) { mynumber u; if (x <= 0) dx = -dx; u.x = big + fabs (x); x = fabs (x) - (u.x - big); double xx, s, sn, ssn, c, cs, ccs, cor; xx = x * x; s = x + (dx + x * xx * (sn3 + xx * sn5)); c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6)); SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); cor = (ssn + s * ccs - sn * c) + cs * s; return sn + cor; } /* Reduce range of x to within PI/2 with abs (x) < 105414350. The high part is written to *a, the low part to *da. Range reduction is accurate to 136 bits so that when x is large and *a very close to zero, all 53 bits of *a are correct. */ static inline int4 __always_inline reduce_sincos (double x, double *a, double *da) { mynumber v; double t = (x * hpinv + toint); double xn = t - toint; v.x = t; double y = (x - xn * mp1) - xn * mp2; int4 n = v.i[LOW_HALF] & 3; double b, db, t1, t2; t1 = xn * pp3; t2 = y - t1; db = (y - t2) - t1; t1 = xn * pp4; b = t2 - t1; db += (t2 - b) - t1; *a = b; *da = db; return n; } /* Compute sin or cos (A + DA) for the given quadrant N. */ static double __always_inline do_sincos (double a, double da, int4 n) { double retval; if (n & 1) /* Max ULP is 0.513. */ retval = do_cos (a, da); else { double xx = a * a; /* Max ULP is 0.501 if xx < 0.01588, otherwise ULP is 0.518. */ if (xx < 0.01588) retval = TAYLOR_SIN (xx, a, da); else retval = __copysign (do_sin (a, da), a); } return (n & 2) ? -retval : retval; } /*******************************************************************/ /* An ultimate sin routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of sin(x) */ /*******************************************************************/ #ifdef IN_SINCOS static double #else double SECTION #endif __sin (double x) { #ifndef IN_SINCOS double xx, t, a, da; mynumber u; int4 k, m, n; double retval = 0; SET_RESTORE_ROUND_53BIT (FE_TONEAREST); #else double xx, t, cor; mynumber u; int4 k, m; double retval = 0; #endif u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff & m; /* no sign */ if (k < 0x3e500000) /* if x->0 =>sin(x)=x */ { math_check_force_underflow (x); retval = x; } /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/ else if (k < 0x3fd00000) { xx = x * x; /* Taylor series. */ t = POLYNOMIAL (xx) * (xx * x); /* Max ULP of x + t is 0.535. */ retval = x + t; } /* else if (k < 0x3fd00000) */ /*---------------------------- 0.25<|x|< 0.855469---------------------- */ else if (k < 0x3feb6000) { /* Max ULP is 0.548. */ retval = __copysign (do_sin (x, 0), x); } /* else if (k < 0x3feb6000) */ /*----------------------- 0.855469 <|x|<2.426265 ----------------------*/ else if (k < 0x400368fd) { t = hp0 - fabs (x); /* Max ULP is 0.51. */ retval = __copysign (do_cos (t, hp1), x); } /* else if (k < 0x400368fd) */ #ifndef IN_SINCOS /*-------------------------- 2.426265<|x|< 105414350 ----------------------*/ else if (k < 0x419921FB) { n = reduce_sincos (x, &a, &da); retval = do_sincos (a, da, n); } /* else if (k < 0x419921FB ) */ /* --------------------105414350 <|x| <2^1024------------------------------*/ else if (k < 0x7ff00000) { n = __branred (x, &a, &da); retval = do_sincos (a, da, n); } /*--------------------- |x| > 2^1024 ----------------------------------*/ else { if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) __set_errno (EDOM); retval = x / x; } #endif return retval; } /*******************************************************************/ /* An ultimate cos routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of cos(x) */ /*******************************************************************/ #ifdef IN_SINCOS static double #else double SECTION #endif __cos (double x) { double y, xx, a, da; mynumber u; #ifndef IN_SINCOS int4 k, m, n; #else int4 k, m; #endif double retval = 0; #ifndef IN_SINCOS SET_RESTORE_ROUND_53BIT (FE_TONEAREST); #endif u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff & m; /* |x|<2^-27 => cos(x)=1 */ if (k < 0x3e400000) retval = 1.0; else if (k < 0x3feb6000) { /* 2^-27 < |x| < 0.855469 */ /* Max ULP is 0.51. */ retval = do_cos (x, 0); } /* else if (k < 0x3feb6000) */ else if (k < 0x400368fd) { /* 0.855469 <|x|<2.426265 */ ; y = hp0 - fabs (x); a = y + hp1; da = (y - a) + hp1; xx = a * a; /* Max ULP is 0.501 if xx < 0.01588 or 0.518 otherwise. Range reduction uses 106 bits here which is sufficient. */ if (xx < 0.01588) retval = TAYLOR_SIN (xx, a, da); else retval = __copysign (do_sin (a, da), a); } /* else if (k < 0x400368fd) */ #ifndef IN_SINCOS else if (k < 0x419921FB) { /* 2.426265<|x|< 105414350 */ n = reduce_sincos (x, &a, &da); retval = do_sincos (a, da, n + 1); } /* else if (k < 0x419921FB ) */ /* 105414350 <|x| <2^1024 */ else if (k < 0x7ff00000) { n = __branred (x, &a, &da); retval = do_sincos (a, da, n + 1); } else { if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) __set_errno (EDOM); retval = x / x; /* |x| > 2^1024 */ } #endif return retval; } #ifndef __cos libm_alias_double (__cos, cos) #endif #ifndef __sin libm_alias_double (__sin, sin) #endif