/* * IBM Accurate Mathematical Library * Copyright (c) International Business Machines Corp., 2001 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /****************************************************************************/ /* */ /* MODULE_NAME:usncs.c */ /* */ /* FUNCTIONS: usin */ /* ucos */ /* slow */ /* slow1 */ /* slow2 */ /* sloww */ /* sloww1 */ /* sloww2 */ /* bsloww */ /* bsloww1 */ /* bsloww2 */ /* cslow2 */ /* csloww */ /* csloww1 */ /* csloww2 */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */ /* branred.c sincos32.c dosincos.c mpa.c */ /* sincos.tbl */ /* */ /* An ultimate sin and routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /****************************************************************************/ #include "endian.h" #include "mydefs.h" #include "usncs.h" #include "MathLib.h" #include "sincos.tbl" static const double sn3 = -1.66666666666664880952546298448555E-01, sn5 = 8.33333214285722277379541354343671E-03, cs2 = 4.99999999999999999999950396842453E-01, cs4 = -4.16666666666664434524222570944589E-02, cs6 = 1.38888874007937613028114285595617E-03; void dubsin(double x, double dx, double w[]); void docos(double x, double dx, double w[]); double mpsin(double x, double dx); double mpcos(double x, double dx); double mpsin1(double x); double mpcos1(double x); static double slow(double x); static double slow1(double x); static double slow2(double x); static double sloww(double x, double dx, double orig); static double sloww1(double x, double dx, double orig); static double sloww2(double x, double dx, double orig, int n); static double bsloww(double x, double dx, double orig, int n); static double bsloww1(double x, double dx, double orig, int n); static double bsloww2(double x, double dx, double orig, int n); int branred(double x, double *a, double *aa); static double cslow2(double x); static double csloww(double x, double dx, double orig); static double csloww1(double x, double dx, double orig); static double csloww2(double x, double dx, double orig, int n); /*******************************************************************/ /* An ultimate sin routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of sin(x) */ /*******************************************************************/ double sin(double x){ double xx,res,t,cor,y,w[2],s,c,sn,ssn,cs,ccs,xn,a,da,db,eps,xn1,xn2; mynumber u,v; int4 k,m,n,nn; u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff&m; /* no sign */ if (k < 0x3e500000) /* if x->0 =>sin(x)=x */ return x; /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/ else if (k < 0x3fd00000){ xx = x*x; /*Taylor series */ t = ((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*(xx*x); res = x+t; cor = (x-res)+t; return (res == res + 1.07*cor)? res : slow(x); } /* else if (k < 0x3fd00000) */ /*---------------------------- 0.25<|x|< 0.855469---------------------- */ else if (k < 0x3feb6000) { u.x=(m>0)?big.x+x:big.x-x; y=(m>0)?x-(u.x-big.x):x+(u.x-big.x); xx=y*y; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=(m>0)?sincos.x[k]:-sincos.x[k]; ssn=(m>0)?sincos.x[k+1]:-sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; return (res==res+1.025*cor)? res : slow1(x); } /* else if (k < 0x3feb6000) */ /*----------------------- 0.855469 <|x|<2.426265 ----------------------*/ else if (k < 0x400368fd ) { y = (m>0)? hp0.x-x:hp0.x+x; if (y>=0) { u.x = big.x+y; y = (y-(u.x-big.x))+hp1.x; } else { u.x = big.x-y; y = (-hp1.x) - (y+(u.x-big.x)); } xx=y*y; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; return (res==res+1.020*cor)? ((m>0)?res:-res) : slow2(x); } /* else if (k < 0x400368fd) */ /*-------------------------- 2.426265<|x|< 105414350 ----------------------*/ else if (k < 0x419921FB ) { t = (x*hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (x - xn*mp1.x) - xn*mp2.x; n =v.i[LOW_HALF]&3; da = xn*mp3.x; a=y-da; da = (y-a)-da; eps = ABS(x)*1.2e-30; switch (n) { /* quarter of unit circle */ case 0: case 2: xx = a*a; if (n) {a=-a;da=-da;} if (xx < 0.01588) { /*Taylor series */ t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps; return (res == res + cor)? res : sloww(a,da,x); } else { if (a>0) {m=1;t=a;db=da;} else {m=0;t=-a;db=-da;} u.x=big.x+t; y=t-(u.x-big.x); xx=y*y; s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps; return (res==res+cor)? ((m)?res:-res) : sloww1(a,da,x); } break; case 1: case 3: if (a<0) {a=-a;da=-da;} u.x=big.x+a; y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps; return (res==res+cor)? ((n&2)?-res:res) : sloww2(a,da,x,n); break; } } /* else if (k < 0x419921FB ) */ /*---------------------105414350 <|x|< 281474976710656 --------------------*/ else if (k < 0x42F00000 ) { t = (x*hpinv.x + toint.x); xn = t - toint.x; v.x = t; xn1 = (xn+8.0e22)-8.0e22; xn2 = xn - xn1; y = ((((x - xn1*mp1.x) - xn1*mp2.x)-xn2*mp1.x)-xn2*mp2.x); n =v.i[LOW_HALF]&3; da = xn1*pp3.x; t=y-da; da = (y-t)-da; da = (da - xn2*pp3.x) -xn*pp4.x; a = t+da; da = (t-a)+da; eps = 1.0e-24; switch (n) { case 0: case 2: xx = a*a; if (n) {a=-a;da=-da;} if (xx < 0.01588) { /* Taylor series */ t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps; return (res == res + cor)? res : bsloww(a,da,x,n); } else { if (a>0) {m=1;t=a;db=da;} else {m=0;t=-a;db=-da;} u.x=big.x+t; y=t-(u.x-big.x); xx=y*y; s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps; return (res==res+cor)? ((m)?res:-res) : bsloww1(a,da,x,n); } break; case 1: case 3: if (a<0) {a=-a;da=-da;} u.x=big.x+a; y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps; return (res==res+cor)? ((n&2)?-res:res) : bsloww2(a,da,x,n); break; } } /* else if (k < 0x42F00000 ) */ /* -----------------281474976710656 <|x| <2^1024----------------------------*/ else if (k < 0x7ff00000) { n = branred(x,&a,&da); switch (n) { case 0: if (a*a < 0.01588) return bsloww(a,da,x,n); else return bsloww1(a,da,x,n); break; case 2: if (a*a < 0.01588) return bsloww(-a,-da,x,n); else return bsloww1(-a,-da,x,n); break; case 1: case 3: return bsloww2(a,da,x,n); break; } } /* else if (k < 0x7ff00000 ) */ /*--------------------- |x| > 2^1024 ----------------------------------*/ else return NAN.x; return 0; /* unreachable */ } /*******************************************************************/ /* An ultimate cos routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of cos(x) */ /*******************************************************************/ double cos(double x) { double y,xx,res,t,cor,s,c,sn,ssn,cs,ccs,xn,a,da,db,eps,xn1,xn2; mynumber u,v; int4 k,m,n; u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff&m; if (k < 0x3e400000 ) return 1.0; /* |x|<2^-27 => cos(x)=1 */ else if (k < 0x3feb6000 ) {/* 2^-27 < |x| < 0.855469 */ y=ABS(x); u.x = big.x+y; y = y-(u.x-big.x); xx=y*y; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; return (res==res+1.020*cor)? res : cslow2(x); } /* else if (k < 0x3feb6000) */ else if (k < 0x400368fd ) {/* 0.855469 <|x|<2.426265 */; y=hp0.x-ABS(x); a=y+hp1.x; da=(y-a)+hp1.x; xx=a*a; if (xx < 0.01588) { t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; cor = (cor>0)? 1.02*cor+1.0e-31 : 1.02*cor -1.0e-31; return (res == res + cor)? res : csloww(a,da,x); } else { if (a>0) {m=1;t=a;db=da;} else {m=0;t=-a;db=-da;} u.x=big.x+t; y=t-(u.x-big.x); xx=y*y; s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; cor = (cor>0)? 1.035*cor+1.0e-31 : 1.035*cor-1.0e-31; return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x); } } /* else if (k < 0x400368fd) */ else if (k < 0x419921FB ) {/* 2.426265<|x|< 105414350 */ t = (x*hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (x - xn*mp1.x) - xn*mp2.x; n =v.i[LOW_HALF]&3; da = xn*mp3.x; a=y-da; da = (y-a)-da; eps = ABS(x)*1.2e-30; switch (n) { case 1: case 3: xx = a*a; if (n == 1) {a=-a;da=-da;} if (xx < 0.01588) { t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps; return (res == res + cor)? res : csloww(a,da,x); } else { if (a>0) {m=1;t=a;db=da;} else {m=0;t=-a;db=-da;} u.x=big.x+t; y=t-(u.x-big.x); xx=y*y; s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps; return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x); } break; case 0: case 2: if (a<0) {a=-a;da=-da;} u.x=big.x+a; y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps; return (res==res+cor)? ((n)?-res:res) : csloww2(a,da,x,n); break; } } /* else if (k < 0x419921FB ) */ else if (k < 0x42F00000 ) { t = (x*hpinv.x + toint.x); xn = t - toint.x; v.x = t; xn1 = (xn+8.0e22)-8.0e22; xn2 = xn - xn1; y = ((((x - xn1*mp1.x) - xn1*mp2.x)-xn2*mp1.x)-xn2*mp2.x); n =v.i[LOW_HALF]&3; da = xn1*pp3.x; t=y-da; da = (y-t)-da; da = (da - xn2*pp3.x) -xn*pp4.x; a = t+da; da = (t-a)+da; eps = 1.0e-24; switch (n) { case 1: case 3: xx = a*a; if (n==1) {a=-a;da=-da;} if (xx < 0.01588) { t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps; return (res == res + cor)? res : bsloww(a,da,x,n); } else { if (a>0) {m=1;t=a;db=da;} else {m=0;t=-a;db=-da;} u.x=big.x+t; y=t-(u.x-big.x); xx=y*y; s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps; return (res==res+cor)? ((m)?res:-res) : bsloww1(a,da,x,n); } break; case 0: case 2: if (a<0) {a=-a;da=-da;} u.x=big.x+a; y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps; return (res==res+cor)? ((n)?-res:res) : bsloww2(a,da,x,n); break; } } /* else if (k < 0x42F00000 ) */ else if (k < 0x7ff00000) {/* 281474976710656 <|x| <2^1024 */ n = branred(x,&a,&da); switch (n) { case 1: if (a*a < 0.01588) return bsloww(-a,-da,x,n); else return bsloww1(-a,-da,x,n); break; case 3: if (a*a < 0.01588) return bsloww(a,da,x,n); else return bsloww1(a,da,x,n); break; case 0: case 2: return bsloww2(a,da,x,n); break; } } /* else if (k < 0x7ff00000 ) */ else return NAN.x; /* |x| > 2^1024 */ return 0; } /************************************************************************/ /* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */ /* precision and if still doesn't accurate enough by mpsin or dubsin */ /************************************************************************/ static double slow(double x) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2]; x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=x-x1; xx=x*x; t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; if (res == res + 1.0007*cor) return res; else { dubsin(ABS(x),0,w); if (w[0] == w[0]+1.000000001*w[1]) return (x>0)?w[0]:-w[0]; else return (x>0)?mpsin(x,0):-mpsin(-x,0); } } /*******************************************************************************/ /* Routine compute sin(x) for 0.25<|x|< 0.855469 by sincos.tbl and Taylor */ /* and if result still doesn't accurate enough by mpsin or dubsin */ /*******************************************************************************/ static double slow1(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; /* Data */ ssn=sincos.x[k+1]; /* from */ cs=sincos.x[k+2]; /* tables */ ccs=sincos.x[k+3]; /* sincos.tbl */ y1 = (y+t22)-t22; y2 = y - y1; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; if (res == res+1.0005*cor) return (x>0)?res:-res; else { dubsin(ABS(x),0,w); if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0]; else return (x>0)?mpsin(x,0):-mpsin(-x,0); } } /**************************************************************************/ /* Routine compute sin(x) for 0.855469 <|x|<2.426265 by sincos.tbl */ /* and if result still doesn't accurate enough by mpsin or dubsin */ /**************************************************************************/ static double slow2(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res,del; static const double t22 = 6291456.0; int4 k; y=ABS(x); y = hp0.x-y; if (y>=0) { u.x = big.x+y; y = y-(u.x-big.x); del = hp1.x; } else { u.x = big.x-y; y = -(y+(u.x-big.x)); del = -hp1.x; } xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*del+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+del; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; if (res == res+1.0005*cor) return (x>0)?res:-res; else { y=ABS(x)-hp0.x; y1=y-hp1.x; y2=(y-y1)-hp1.x; docos(y1,y2,w); if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0]; else return (x>0)?mpsin(x,0):-mpsin(-x,0); } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x is small enough*/ /* to use Taylor series around zero and (x+dx) */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of */ /* result.And if result not accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static double sloww(double x,double dx, double orig) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn; union {int4 i[2]; double x;} v; int4 n; x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=(x-x1)+dx; xx=x*x; t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30; if (res == res + cor) return res; else { (x>0)? dubsin(x,dx,w) : dubsin(-x,-dx,w); cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30; if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else { t = (orig*hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (orig - xn*mp1.x) - xn*mp2.x; n =v.i[LOW_HALF]&3; da = xn*pp3.x; t=y-da; da = (y-t)-da; y = xn*pp4.x; a = t - y; da = ((t-a)-y)+da; if (n&2) {a=-a; da=-da;} (a>0)? dubsin(a,da,w) : dubsin(-a,-da,w); cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40; if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0]; else return mpsin1(orig); } } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in first or */ /* third quarter of unit circle.Routine receive also (right argument) the */ /* original value of x for computing error of result.And if result not */ /* accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static double sloww1(double x, double dx, double orig) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig); if (res == res + cor) return (x>0)?res:-res; else { dubsin(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig); if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else return mpsin1(orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in second or */ /* fourth quarter of unit circle.Routine receive also the original value */ /* and quarter(n= 1or 3)of x for computing error of result.And if result not*/ /* accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static double sloww2(double x, double dx, double orig, int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig); if (res == res + cor) return (n&2)?-res:res; else { docos(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig); if (w[0] == w[0]+cor) return (n&2)?-w[0]:w[0]; else return mpsin1(orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* is small enough to use Taylor series around zero and (x+dx) */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of */ /* result.And if result not accurate enough routine calls other routines */ /***************************************************************************/ static double bsloww(double x,double dx, double orig,int n) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn; union {int4 i[2]; double x;} v; x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=(x-x1)+dx; xx=x*x; t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24; if (res == res + cor) return res; else { (x>0)? dubsin(x,dx,w) : dubsin(-x,-dx,w); cor = (w[1]>0)? 1.000000001*w[1] + 1.1e-24 : 1.000000001*w[1] - 1.1e-24; if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else return (n&1)?mpcos1(orig):mpsin1(orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of result.*/ /* And if result not accurate enough routine calls other routines */ /***************************************************************************/ static double bsloww1(double x, double dx, double orig,int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24; if (res == res + cor) return (x>0)?res:-res; else { dubsin(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-24: 1.000000005*w[1]-1.1e-24; if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else return (n&1)?mpcos1(orig):mpsin1(orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* in second or fourth quarter of unit circle.Routine receive also the */ /* original value and quarter(n= 1or 3)of x for computing error of result. */ /* And if result not accurate enough routine calls other routines */ /***************************************************************************/ static double bsloww2(double x, double dx, double orig, int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24; if (res == res + cor) return (n&2)?-res:res; else { docos(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-24 : 1.000000005*w[1]-1.1e-24; if (w[0] == w[0]+cor) return (n&2)?-w[0]:w[0]; else return (n&1)?mpsin1(orig):mpcos1(orig); } } /************************************************************************/ /* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more */ /* precision and if still doesn't accurate enough by mpcos or docos */ /************************************************************************/ static double cslow2(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x = big.x+y; y = y-(u.x-big.x); xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = y - y1; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; if (res == res+1.0005*cor) return res; else { y=ABS(x); docos(y,0,w); if (w[0] == w[0]+1.000000005*w[1]) return w[0]; else return mpcos(x,0); } } /***************************************************************************/ /* Routine compute cos(x+dx) (Double-Length number) where x is small enough*/ /* to use Taylor series around zero and (x+dx) .Routine receive also */ /* (right argument) the original value of x for computing error of */ /* result.And if result not accurate enough routine calls other routines */ /***************************************************************************/ static double csloww(double x,double dx, double orig) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn; union {int4 i[2]; double x;} v; int4 n; x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=(x-x1)+dx; xx=x*x; /* Taylor series */ t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30; if (res == res + cor) return res; else { (x>0)? dubsin(x,dx,w) : dubsin(-x,-dx,w); cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30; if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else { t = (orig*hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (orig - xn*mp1.x) - xn*mp2.x; n =v.i[LOW_HALF]&3; da = xn*pp3.x; t=y-da; da = (y-t)-da; y = xn*pp4.x; a = t - y; da = ((t-a)-y)+da; if (n==1) {a=-a; da=-da;} (a>0)? dubsin(a,da,w) : dubsin(-a,-da,w); cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40; if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0]; else return mpcos1(orig); } } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in first or */ /* third quarter of unit circle.Routine receive also (right argument) the */ /* original value of x for computing error of result.And if result not */ /* accurate enough routine calls other routines */ /***************************************************************************/ static double csloww1(double x, double dx, double orig) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig); if (res == res + cor) return (x>0)?res:-res; else { dubsin(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig); if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else return mpcos1(orig); } } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in second or */ /* fourth quarter of unit circle.Routine receive also the original value */ /* and quarter(n= 1or 3)of x for computing error of result.And if result not*/ /* accurate enough routine calls other routines */ /***************************************************************************/ static double csloww2(double x, double dx, double orig, int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig); if (res == res + cor) return (n)?-res:res; else { docos(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig); if (w[0] == w[0]+cor) return (n)?-w[0]:w[0]; else return mpcos1(orig); } } #ifdef NO_LONG_DOUBLE weak_alias (sin, sinl) weak_alias (cos, cosl) #endif