/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2013 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see .
*/
/************************************************************************/
/* MODULE_NAME: atnat.c */
/* */
/* FUNCTIONS: uatan */
/* atanMp */
/* signArctan */
/* */
/* */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */
/* mpatan.c mpatan2.c mpsqrt.c */
/* uatan.tbl */
/* */
/* An ultimate atan() routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of atan(x). */
/* */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/************************************************************************/
#include
#include "mpa.h"
#include "MathLib.h"
#include "uatan.tbl"
#include "atnat.h"
#include
#include
void __mpatan (mp_no *, mp_no *, int); /* see definition in mpatan.c */
static double atanMp (double, const int[]);
/* Fix the sign of y and return */
static double
__signArctan (double x, double y)
{
return __copysign (y, x);
}
/* An ultimate atan() routine. Given an IEEE double machine number x, */
/* routine computes the correctly rounded (to nearest) value of atan(x). */
double
atan (double x)
{
double cor, s1, ss1, s2, ss2, t1, t2, t3, t7, t8, t9, t10, u, u2, u3,
v, vv, w, ww, y, yy, z, zz;
#ifndef DLA_FMS
double t4, t5, t6;
#endif
int i, ux, dx;
static const int pr[M] = { 6, 8, 10, 32 };
number num;
num.d = x;
ux = num.i[HIGH_HALF];
dx = num.i[LOW_HALF];
/* x=NaN */
if (((ux & 0x7ff00000) == 0x7ff00000)
&& (((ux & 0x000fffff) | dx) != 0x00000000))
return x + x;
/* Regular values of x, including denormals +-0 and +-INF */
u = (x < 0) ? -x : x;
if (u < C)
{
if (u < B)
{
if (u < A)
return x;
else
{ /* A <= u < B */
v = x * x;
yy = d11.d + v * d13.d;
yy = d9.d + v * yy;
yy = d7.d + v * yy;
yy = d5.d + v * yy;
yy = d3.d + v * yy;
yy *= x * v;
if ((y = x + (yy - U1 * x)) == x + (yy + U1 * x))
return y;
EMULV (x, x, v, vv, t1, t2, t3, t4, t5); /* v+vv=x^2 */
s1 = f17.d + v * f19.d;
s1 = f15.d + v * s1;
s1 = f13.d + v * s1;
s1 = f11.d + v * s1;
s1 *= v;
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (x, 0, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7,
t8);
ADD2 (x, 0, s2, ss2, s1, ss1, t1, t2);
if ((y = s1 + (ss1 - U5 * s1)) == s1 + (ss1 + U5 * s1))
return y;
return atanMp (x, pr);
}
}
else
{ /* B <= u < C */
i = (TWO52 + TWO8 * u) - TWO52;
i -= 16;
z = u - cij[i][0].d;
yy = cij[i][5].d + z * cij[i][6].d;
yy = cij[i][4].d + z * yy;
yy = cij[i][3].d + z * yy;
yy = cij[i][2].d + z * yy;
yy *= z;
t1 = cij[i][1].d;
if (i < 112)
{
if (i < 48)
u2 = U21; /* u < 1/4 */
else
u2 = U22;
} /* 1/4 <= u < 1/2 */
else
{
if (i < 176)
u2 = U23; /* 1/2 <= u < 3/4 */
else
u2 = U24;
} /* 3/4 <= u <= 1 */
if ((y = t1 + (yy - u2 * t1)) == t1 + (yy + u2 * t1))
return __signArctan (x, y);
z = u - hij[i][0].d;
s1 = hij[i][14].d + z * hij[i][15].d;
s1 = hij[i][13].d + z * s1;
s1 = hij[i][12].d + z * s1;
s1 = hij[i][11].d + z * s1;
s1 *= z;
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
if ((y = s2 + (ss2 - U6 * s2)) == s2 + (ss2 + U6 * s2))
return __signArctan (x, y);
return atanMp (x, pr);
}
}
else
{
if (u < D)
{ /* C <= u < D */
w = 1 / u;
EMULV (w, u, t1, t2, t3, t4, t5, t6, t7);
ww = w * ((1 - t1) - t2);
i = (TWO52 + TWO8 * w) - TWO52;
i -= 16;
z = (w - cij[i][0].d) + ww;
yy = cij[i][5].d + z * cij[i][6].d;
yy = cij[i][4].d + z * yy;
yy = cij[i][3].d + z * yy;
yy = cij[i][2].d + z * yy;
yy = HPI1 - z * yy;
t1 = HPI - cij[i][1].d;
if (i < 112)
u3 = U31; /* w < 1/2 */
else
u3 = U32; /* w >= 1/2 */
if ((y = t1 + (yy - u3)) == t1 + (yy + u3))
return __signArctan (x, y);
DIV2 (1 , 0, u, 0, w, ww, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
t1 = w - hij[i][0].d;
EADD (t1, ww, z, zz);
s1 = hij[i][14].d + z * hij[i][15].d;
s1 = hij[i][13].d + z * s1;
s1 = hij[i][12].d + z * s1;
s1 = hij[i][11].d + z * s1;
s1 *= z;
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
SUB2 (HPI, HPI1, s2, ss2, s1, ss1, t1, t2);
if ((y = s1 + (ss1 - U7)) == s1 + (ss1 + U7))
return __signArctan (x, y);
return atanMp (x, pr);
}
else
{
if (u < E)
{ /* D <= u < E */
w = 1 / u;
v = w * w;
EMULV (w, u, t1, t2, t3, t4, t5, t6, t7);
yy = d11.d + v * d13.d;
yy = d9.d + v * yy;
yy = d7.d + v * yy;
yy = d5.d + v * yy;
yy = d3.d + v * yy;
yy *= w * v;
ww = w * ((1 - t1) - t2);
ESUB (HPI, w, t3, cor);
yy = ((HPI1 + cor) - ww) - yy;
if ((y = t3 + (yy - U4)) == t3 + (yy + U4))
return __signArctan (x, y);
DIV2 (1 , 0, u, 0, w, ww, t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10);
MUL2 (w, ww, w, ww, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
s1 = f17.d + v * f19.d;
s1 = f15.d + v * s1;
s1 = f13.d + v * s1;
s1 = f11.d + v * s1;
s1 *= v;
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (w, ww, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (w, ww, s2, ss2, s1, ss1, t1, t2);
SUB2 (HPI, HPI1, s1, ss1, s2, ss2, t1, t2);
if ((y = s2 + (ss2 - U8)) == s2 + (ss2 + U8))
return __signArctan (x, y);
return atanMp (x, pr);
}
else
{
/* u >= E */
if (x > 0)
return HPI;
else
return MHPI;
}
}
}
}
/* Final stages. Compute atan(x) by multiple precision arithmetic */
static double
atanMp (double x, const int pr[])
{
mp_no mpx, mpy, mpy2, mperr, mpt1, mpy1;
double y1, y2;
int i, p;
for (i = 0; i < M; i++)
{
p = pr[i];
__dbl_mp (x, &mpx, p);
__mpatan (&mpx, &mpy, p);
__dbl_mp (u9[i].d, &mpt1, p);
__mul (&mpy, &mpt1, &mperr, p);
__add (&mpy, &mperr, &mpy1, p);
__sub (&mpy, &mperr, &mpy2, p);
__mp_dbl (&mpy1, &y1, p);
__mp_dbl (&mpy2, &y2, p);
if (y1 == y2)
{
LIBC_PROBE (slowatan, 3, &p, &x, &y1);
return y1;
}
}
LIBC_PROBE (slowatan_inexact, 3, &p, &x, &y1);
return y1; /*if impossible to do exact computing */
}
#ifdef NO_LONG_DOUBLE
weak_alias (atan, atanl)
#endif