/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001, 2011 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /************************************************************************/ /* MODULE_NAME: atnat.c */ /* */ /* FUNCTIONS: uatan */ /* atanMp */ /* signArctan */ /* */ /* */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */ /* mpatan.c mpatan2.c mpsqrt.c */ /* uatan.tbl */ /* */ /* An ultimate atan() routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of atan(x). */ /* */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /************************************************************************/ #include #include "mpa.h" #include "MathLib.h" #include "uatan.tbl" #include "atnat.h" #include "math.h" void __mpatan(mp_no *,mp_no *,int); /* see definition in mpatan.c */ static double atanMp(double,const int[]); double __signArctan(double,double); /* An ultimate atan() routine. Given an IEEE double machine number x, */ /* routine computes the correctly rounded (to nearest) value of atan(x). */ double atan(double x) { double cor,s1,ss1,s2,ss2,t1,t2,t3,t7,t8,t9,t10,u,u2,u3, v,vv,w,ww,y,yy,z,zz; #ifndef DLA_FMA double t4,t5,t6; #endif #if 0 double y1,y2; #endif int i,ux,dx; #if 0 int p; #endif static const int pr[M]={6,8,10,32}; number num; #if 0 mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr; #endif num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; /* x=NaN */ if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000)) return x+x; /* Regular values of x, including denormals +-0 and +-INF */ u = (x= 1/2 */ if ((y=t1+(yy-u3)) == t1+(yy+u3)) return __signArctan(x,y); DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) t1=w-hij[i][0].d; EADD(t1,ww,z,zz) s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+ z*(hij[i][14].d+z* hij[i][15].d)))); ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2) if ((y=s1+(ss1-U7)) == s1+(ss1+U7)) return __signArctan(x,y); return atanMp(x,pr); } else { if (u= E */ if (x>0) return HPI; else return MHPI; } } } } /* Fix the sign of y and return */ double __signArctan(double x,double y){ if (x