/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2012 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see .
*/
/************************************************************************/
/* MODULE_NAME: atnat.c */
/* */
/* FUNCTIONS: uatan */
/* atanMp */
/* signArctan */
/* */
/* */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */
/* mpatan.c mpatan2.c mpsqrt.c */
/* uatan.tbl */
/* */
/* An ultimate atan() routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of atan(x). */
/* */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/************************************************************************/
#include
#include "mpa.h"
#include "MathLib.h"
#include "uatan.tbl"
#include "atnat.h"
#include
void __mpatan(mp_no *,mp_no *,int); /* see definition in mpatan.c */
static double atanMp(double,const int[]);
/* Fix the sign of y and return */
static double __signArctan(double x,double y){
return __copysign(y, x);
}
/* An ultimate atan() routine. Given an IEEE double machine number x, */
/* routine computes the correctly rounded (to nearest) value of atan(x). */
double atan(double x) {
double cor,s1,ss1,s2,ss2,t1,t2,t3,t7,t8,t9,t10,u,u2,u3,
v,vv,w,ww,y,yy,z,zz;
#ifndef DLA_FMS
double t4,t5,t6;
#endif
#if 0
double y1,y2;
#endif
int i,ux,dx;
#if 0
int p;
#endif
static const int pr[M]={6,8,10,32};
number num;
#if 0
mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr;
#endif
num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF];
/* x=NaN */
if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000))
return x+x;
/* Regular values of x, including denormals +-0 and +-INF */
u = (x= 1/2 */
if ((y=t1+(yy-u3)) == t1+(yy+u3)) return __signArctan(x,y);
DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
t1=w-hij[i][0].d;
EADD(t1,ww,z,zz)
s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
z*(hij[i][14].d+z* hij[i][15].d))));
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2)
if ((y=s1+(ss1-U7)) == s1+(ss1+U7)) return __signArctan(x,y);
return atanMp(x,pr);
}
else {
if (u= E */
if (x>0) return HPI;
else return MHPI; }
}
}
}
/* Final stages. Compute atan(x) by multiple precision arithmetic */
static double atanMp(double x,const int pr[]){
mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1;
double y1,y2;
int i,p;
for (i=0; i