/* * IBM Accurate Mathematical Library * Copyright (c) International Business Machines Corp., 2001 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /****************************************************************************/ /* MODULE_NAME:mpsqrt.c */ /* */ /* FUNCTION:mpsqrt */ /* fastiroot */ /* */ /* FILES NEEDED:endian.h mpa.h mpsqrt.h */ /* mpa.c */ /* Multi-Precision square root function subroutine for precision p >= 4. */ /* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */ /* */ /****************************************************************************/ #include "endian.h" #include "mpa.h" /****************************************************************************/ /* Multi-Precision square root function subroutine for precision p >= 4. */ /* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */ /* Routine receives two pointers to Multi Precision numbers: */ /* x (left argument) and y (next argument). Routine also receives precision */ /* p as integer. Routine computes sqrt(*x) and stores result in *y */ /****************************************************************************/ double fastiroot(double); void mpsqrt(mp_no *x, mp_no *y, int p) { #include "mpsqrt.h" int i,m,ex,ey; double dx,dy; mp_no mphalf = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,}, mp3halfs = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,}; mp_no mpxn,mpz,mpu,mpt1,mpt2; /* Prepare multi-precision 1/2 and 3/2 */ mphalf.e =0; mphalf.d[0] =ONE; mphalf.d[1] =HALFRAD; mp3halfs.e=1; mp3halfs.d[0]=ONE; mp3halfs.d[1]=ONE; mp3halfs.d[2]=HALFRAD; ex=EX; ey=EX/2; cpy(x,&mpxn,p); mpxn.e -= (ey+ey); mp_dbl(&mpxn,&dx,p); dy=fastiroot(dx); dbl_mp(dy,&mpu,p); mul(&mpxn,&mphalf,&mpz,p); m=mp[p]; for (i=0; i>1; z = ((c3*z + c2)*z + c1)*z + c0; /* 2**-7 */ z = z*(1.5 - 0.5*y*z*z); /* 2**-14 */ p.d = z*(1.5 - 0.5*y*z*z); /* 2**-28 */ p.i[HIGH_HALF] -= n; t = x*p.d; return p.d*(1.5 - 0.5*p.d*t); }