/* Configuration for double precision math routines. Copyright (C) 2018-2023 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #ifndef _MATH_CONFIG_H #define _MATH_CONFIG_H #include #include #include #include #ifndef WANT_ROUNDING /* Correct special case results in non-nearest rounding modes. */ # define WANT_ROUNDING 1 #endif #ifndef WANT_ERRNO /* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */ # define WANT_ERRNO 1 #endif #ifndef WANT_ERRNO_UFLOW /* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */ # define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO) #endif #ifndef TOINT_INTRINSICS /* When set, the roundtoint and converttoint functions are provided with the semantics documented below. */ # define TOINT_INTRINSICS 0 #endif static inline int clz_uint64 (uint64_t x) { if (sizeof (uint64_t) == sizeof (unsigned long)) return __builtin_clzl (x); else return __builtin_clzll (x); } static inline int ctz_uint64 (uint64_t x) { if (sizeof (uint64_t) == sizeof (unsigned long)) return __builtin_ctzl (x); else return __builtin_ctzll (x); } #if TOINT_INTRINSICS /* Round x to nearest int in all rounding modes, ties have to be rounded consistently with converttoint so the results match. If the result would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */ static inline double_t roundtoint (double_t x); /* Convert x to nearest int in all rounding modes, ties have to be rounded consistently with roundtoint. If the result is not representible in an int32_t then the semantics is unspecified. */ static inline int32_t converttoint (double_t x); #endif static inline uint64_t asuint64 (double f) { union { double f; uint64_t i; } u = {f}; return u.i; } static inline double asdouble (uint64_t i) { union { uint64_t i; double f; } u = {i}; return u.f; } static inline int issignaling_inline (double x) { uint64_t ix = asuint64 (x); if (HIGH_ORDER_BIT_IS_SET_FOR_SNAN) return (ix & 0x7ff8000000000000) == 0x7ff8000000000000; return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL; } #define BIT_WIDTH 64 #define MANTISSA_WIDTH 52 #define EXPONENT_WIDTH 11 #define MANTISSA_MASK UINT64_C(0x000fffffffffffff) #define EXPONENT_MASK UINT64_C(0x7ff0000000000000) #define EXP_MANT_MASK UINT64_C(0x7fffffffffffffff) #define QUIET_NAN_MASK UINT64_C(0x0008000000000000) #define SIGN_MASK UINT64_C(0x8000000000000000) static inline bool is_nan (uint64_t x) { return (x & EXP_MANT_MASK) > EXPONENT_MASK; } static inline uint64_t get_mantissa (uint64_t x) { return x & MANTISSA_MASK; } /* Convert integer number X, unbiased exponent EP, and sign S to double: result = X * 2^(EP+1 - exponent_bias) NB: zero is not supported. */ static inline double make_double (uint64_t x, int64_t ep, uint64_t s) { int lz = clz_uint64 (x) - EXPONENT_WIDTH; x <<= lz; ep -= lz; if (__glibc_unlikely (ep < 0 || x == 0)) { x >>= -ep; ep = 0; } return asdouble (s + x + (ep << MANTISSA_WIDTH)); } /* Error handling tail calls for special cases, with a sign argument. The sign of the return value is set if the argument is non-zero. */ /* The result overflows. */ attribute_hidden double __math_oflow (uint32_t); /* The result underflows to 0 in nearest rounding mode. */ attribute_hidden double __math_uflow (uint32_t); /* The result underflows to 0 in some directed rounding mode only. */ attribute_hidden double __math_may_uflow (uint32_t); /* Division by zero. */ attribute_hidden double __math_divzero (uint32_t); /* Error handling using input checking. */ /* Invalid input unless it is a quiet NaN. */ attribute_hidden double __math_invalid (double); /* Error handling using output checking, only for errno setting. */ /* Check if the result generated a demain error. */ attribute_hidden double __math_edom (double x); /* Check if the result overflowed to infinity. */ attribute_hidden double __math_check_oflow (double); /* Check if the result underflowed to 0. */ attribute_hidden double __math_check_uflow (double); /* Check if the result overflowed to infinity. */ static inline double check_oflow (double x) { return WANT_ERRNO ? __math_check_oflow (x) : x; } /* Check if the result underflowed to 0. */ static inline double check_uflow (double x) { return WANT_ERRNO ? __math_check_uflow (x) : x; } #define EXP_TABLE_BITS 7 #define EXP_POLY_ORDER 5 #define EXP2_POLY_ORDER 5 extern const struct exp_data { double invln2N; double shift; double negln2hiN; double negln2loN; double poly[4]; /* Last four coefficients. */ double exp2_shift; double exp2_poly[EXP2_POLY_ORDER]; uint64_t tab[2*(1 << EXP_TABLE_BITS)]; } __exp_data attribute_hidden; #define LOG_TABLE_BITS 7 #define LOG_POLY_ORDER 6 #define LOG_POLY1_ORDER 12 extern const struct log_data { double ln2hi; double ln2lo; double poly[LOG_POLY_ORDER - 1]; /* First coefficient is 1. */ double poly1[LOG_POLY1_ORDER - 1]; /* See e_log_data.c for details. */ struct {double invc, logc;} tab[1 << LOG_TABLE_BITS]; #ifndef __FP_FAST_FMA struct {double chi, clo;} tab2[1 << LOG_TABLE_BITS]; #endif } __log_data attribute_hidden; #define LOG2_TABLE_BITS 6 #define LOG2_POLY_ORDER 7 #define LOG2_POLY1_ORDER 11 extern const struct log2_data { double invln2hi; double invln2lo; double poly[LOG2_POLY_ORDER - 1]; double poly1[LOG2_POLY1_ORDER - 1]; /* See e_log2_data.c for details. */ struct {double invc, logc;} tab[1 << LOG2_TABLE_BITS]; #ifndef __FP_FAST_FMA struct {double chi, clo;} tab2[1 << LOG2_TABLE_BITS]; #endif } __log2_data attribute_hidden; #define POW_LOG_TABLE_BITS 7 #define POW_LOG_POLY_ORDER 8 extern const struct pow_log_data { double ln2hi; double ln2lo; double poly[POW_LOG_POLY_ORDER - 1]; /* First coefficient is 1. */ /* Note: the pad field is unused, but allows slightly faster indexing. */ /* See e_pow_log_data.c for details. */ struct {double invc, pad, logc, logctail;} tab[1 << POW_LOG_TABLE_BITS]; } __pow_log_data attribute_hidden; #endif