/* * IBM Accurate Mathematical Library * Copyright (c) International Business Machines Corp., 2001 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /*********************************************************************/ /* MODULE_NAME: uroot.c */ /* */ /* FUNCTION: usqrt */ /* */ /* FILES NEEDED: dla.h endian.h mydefs.h uroot.h */ /* uroot.tbl */ /* */ /* An ultimate sqrt routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of square */ /* root of x. */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /*********************************************************************/ #include "endian.h" #include "mydefs.h" #include "dla.h" #include "MathLib.h" #include "root.tbl" /*********************************************************************/ /* An ultimate aqrt routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of square */ /* root of x. */ /*********************************************************************/ double __ieee754_sqrt(double x) { #include "uroot.h" static const double rt0 = 9.99999999859990725855365213134618E-01, rt1 = 4.99999999495955425917856814202739E-01, rt2 = 3.75017500867345182581453026130850E-01, rt3 = 3.12523626554518656309172508769531E-01; static const double big = 134217728.0, big1 = 134217729.0; double y,t,del,res,res1,hy,z,zz,p,hx,tx,ty,s; mynumber a,b,c={0,0}; int4 n,k; a.x=x; k=a.i[HIGH_HALF]; a.i[HIGH_HALF]=(k&0x001fffff)|0x3fe00000; t=inroot[(k&0x001fffff)>>14]; s=a.x; /*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/ if (k>0x000fffff && k<0x7ff00000) { y=1.0-t*(t*s); t=t*(rt0+y*(rt1+y*(rt2+y*rt3))); c.i[HIGH_HALF]=0x20000000+((k&0x7fe00000)>>1); y=t*s; hy=(y+big)-big; del=0.5*t*((s-hy*hy)-(y-hy)*(y+hy)); res=y+del; if (res == (res+1.002*((y-res)+del))) return res*c.x; else { res1=res+1.5*((y-res)+del); EMULV(res,res1,z,zz,p,hx,tx,hy,ty); /* (z+zz)=res*res1 */ return ((((z-s)+zz)<0)?max(res,res1):min(res,res1))*c.x; } } else { if (k>0x7ff00000) /* x -> infinity */ return (big1-big1)/(big-big); if (k<0x00100000) { /* x -> -infinity */ if (x==0) return x; if (k<0) return (big1-big1)/(big-big); else return tm256.x*usqrt(x*t512.x); } else return (a.i[LOW_HALF]==0)?x:(big1-big1)/(big-big); } }