/* * IBM Accurate Mathematical Library * Copyright (c) International Business Machines Corp., 2001 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /**************************************************************************/ /* MODULE_NAME urem.c */ /* */ /* FUNCTION: uremainder */ /* */ /* An ultimate remainder routine. Given two IEEE double machine numbers x */ /* ,y it computes the correctly rounded (to nearest) value of remainder */ /* of dividing x by y. */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /* ************************************************************************/ #include "endian.h" #include "mydefs.h" #include "urem.h" #include "MathLib.h" /**************************************************************************/ /* An ultimate remainder routine. Given two IEEE double machine numbers x */ /* ,y it computes the correctly rounded (to nearest) value of remainder */ /**************************************************************************/ double __ieee754_remainder(double x, double y) { double z,d,xx; #if 0 double yy; #endif int4 kx,ky,n,nn,n1,m1,l; #if 0 int4 m; #endif mynumber u,t,w={{0,0}},v={{0,0}},ww={{0,0}},r; u.x=x; t.x=y; kx=u.i[HIGH_HALF]&0x7fffffff; /* no sign for x*/ t.i[HIGH_HALF]&=0x7fffffff; /*no sign for y */ ky=t.i[HIGH_HALF]; /*------ |x| < 2^1024 and 2^-970 < |y| < 2^1024 ------------------*/ if (kx<0x7ff00000 && ky<0x7ff00000 && ky>=0x03500000) { if (kx+0x001000000)?ZERO.x:nZERO.x); else { if (ABS(xx)>0.5*t.x) return (z>d)?xx-t.x:xx+t.x; else return xx; } } /* (kx<(ky+0x01500000)) */ else { r.x=1.0/t.x; n=t.i[HIGH_HALF]; nn=(n&0x7ff00000)+0x01400000; w.i[HIGH_HALF]=n; ww.x=t.x-w.x; l=(kx-nn)&0xfff00000; n1=ww.i[HIGH_HALF]; m1=r.i[HIGH_HALF]; while (l>0) { r.i[HIGH_HALF]=m1-l; z=u.x*r.x; w.i[HIGH_HALF]=n+l; ww.i[HIGH_HALF]=(n1)?n1+l:n1; d=(z+big.x)-big.x; u.x=(u.x-d*w.x)-d*ww.x; l=(u.i[HIGH_HALF]&0x7ff00000)-nn; } r.i[HIGH_HALF]=m1; w.i[HIGH_HALF]=n; ww.i[HIGH_HALF]=n1; z=u.x*r.x; d=(z+big.x)-big.x; u.x=(u.x-d*w.x)-d*ww.x; if (ABS(u.x)<0.5*t.x) return (u.x!=0)?u.x:((x>0)?ZERO.x:nZERO.x); else if (ABS(u.x)>0.5*t.x) return (d>z)?u.x+t.x:u.x-t.x; else {z=u.x/t.x; d=(z+big.x)-big.x; return ((u.x-d*w.x)-d*ww.x);} } } /* (kx<0x7ff00000&&ky<0x7ff00000&&ky>=0x03500000) */ else { if (kx<0x7ff00000&&ky<0x7ff00000&&(ky>0||t.i[LOW_HALF]!=0)) { y=ABS(y)*t128.x; z=uremainder(x,y)*t128.x; z=uremainder(z,y)*tm128.x; return z; } else { /* if x is too big */ if (kx>=0x7ff00000||(ky==0&&t.i[LOW_HALF]==0)||ky>0x7ff00000|| (ky==0x7ff00000&&t.i[LOW_HALF]!=0)) return (u.i[HIGH_HALF]&0x80000000)?nNAN.x:NAN.x; else return x; } } }