/* Double-precision log(x) function.
Copyright (C) 2018-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include
#include
#include
#include
#include
#include "math_config.h"
#define T __log_data.tab
#define T2 __log_data.tab2
#define B __log_data.poly1
#define A __log_data.poly
#define Ln2hi __log_data.ln2hi
#define Ln2lo __log_data.ln2lo
#define N (1 << LOG_TABLE_BITS)
#define OFF 0x3fe6000000000000
/* Top 16 bits of a double. */
static inline uint32_t
top16 (double x)
{
return asuint64 (x) >> 48;
}
#ifndef SECTION
# define SECTION
#endif
double
SECTION
__log (double x)
{
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
uint64_t ix, iz, tmp;
uint32_t top;
int k, i;
ix = asuint64 (x);
top = top16 (x);
#define LO asuint64 (1.0 - 0x1p-4)
#define HI asuint64 (1.0 + 0x1.09p-4)
if (__glibc_unlikely (ix - LO < HI - LO))
{
/* Handle close to 1.0 inputs separately. */
/* Fix sign of zero with downward rounding when x==1. */
if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0)))
return 0;
r = x - 1.0;
r2 = r * r;
r3 = r * r2;
y = r3 * (B[1] + r * B[2] + r2 * B[3]
+ r3 * (B[4] + r * B[5] + r2 * B[6]
+ r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
/* Worst-case error is around 0.507 ULP. */
w = r * 0x1p27;
double_t rhi = r + w - w;
double_t rlo = r - rhi;
w = rhi * rhi * B[0]; /* B[0] == -0.5. */
hi = r + w;
lo = r - hi + w;
lo += B[0] * rlo * (rhi + r);
y += lo;
y += hi;
return y;
}
if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
{
/* x < 0x1p-1022 or inf or nan. */
if (ix * 2 == 0)
return __math_divzero (1);
if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */
return x;
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
return __math_invalid (x);
/* x is subnormal, normalize it. */
ix = asuint64 (x * 0x1p52);
ix -= 52ULL << 52;
}
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
k = (int64_t) tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
invc = T[i].invc;
logc = T[i].logc;
z = asdouble (iz);
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
/* r ~= z/c - 1, |r| < 1/(2*N). */
#ifdef __FP_FAST_FMA
/* rounding error: 0x1p-55/N. */
r = __builtin_fma (z, invc, -1.0);
#else
/* rounding error: 0x1p-55/N + 0x1p-66. */
r = (z - T2[i].chi - T2[i].clo) * invc;
#endif
kd = (double_t) k;
/* hi + lo = r + log(c) + k*Ln2. */
w = kd * Ln2hi + logc;
hi = w + r;
lo = w - hi + r + kd * Ln2lo;
/* log(x) = lo + (log1p(r) - r) + hi. */
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
/* Worst case error if |y| > 0x1p-4: 0.519 ULP (0.520 ULP without fma).
0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
return y;
}
#ifndef __log
strong_alias (__log, __ieee754_log)
libm_alias_finite (__ieee754_log, __log)
# if LIBM_SVID_COMPAT
versioned_symbol (libm, __log, log, GLIBC_2_29);
libm_alias_double_other (__log, log)
# else
libm_alias_double (__log, log)
# endif
#endif