/* @(#)e_hypot.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* __ieee754_hypot(x,y) * * Method : * If (assume round-to-nearest) z=x*x+y*y * has error less than sqrt(2)/2 ulp, than * sqrt(z) has error less than 1 ulp (exercise). * * So, compute sqrt(x*x+y*y) with some care as * follows to get the error below 1 ulp: * * Assume x>y>0; * (if possible, set rounding to round-to-nearest) * 1. if x > 2y use * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y * where x1 = x with lower 32 bits cleared, x2 = x-x1; else * 2. if x <= 2y use * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, * y1= y with lower 32 bits chopped, y2 = y-y1. * * NOTE: scaling may be necessary if some argument is too * large or too tiny * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns sqrt(x^2+y^2) with error less * than 1 ulps (units in the last place) */ #include #include double __ieee754_hypot (double x, double y) { double a, b, t1, t2, y1, y2, w; int32_t j, k, ha, hb; GET_HIGH_WORD (ha, x); ha &= 0x7fffffff; GET_HIGH_WORD (hb, y); hb &= 0x7fffffff; if (hb > ha) { a = y; b = x; j = ha; ha = hb; hb = j; } else { a = x; b = y; } SET_HIGH_WORD (a, ha); /* a <- |a| */ SET_HIGH_WORD (b, hb); /* b <- |b| */ if ((ha - hb) > 0x3c00000) { return a + b; } /* x/y > 2**60 */ k = 0; if (__glibc_unlikely (ha > 0x5f300000)) /* a>2**500 */ { if (ha >= 0x7ff00000) /* Inf or NaN */ { uint32_t low; w = a + b; /* for sNaN */ if (issignaling (a) || issignaling (b)) return w; GET_LOW_WORD (low, a); if (((ha & 0xfffff) | low) == 0) w = a; GET_LOW_WORD (low, b); if (((hb ^ 0x7ff00000) | low) == 0) w = b; return w; } /* scale a and b by 2**-600 */ ha -= 0x25800000; hb -= 0x25800000; k += 600; SET_HIGH_WORD (a, ha); SET_HIGH_WORD (b, hb); } if (__builtin_expect (hb < 0x23d00000, 0)) /* b < 2**-450 */ { if (hb <= 0x000fffff) /* subnormal b or 0 */ { uint32_t low; GET_LOW_WORD (low, b); if ((hb | low) == 0) return a; t1 = 0; SET_HIGH_WORD (t1, 0x7fd00000); /* t1=2^1022 */ b *= t1; a *= t1; k -= 1022; GET_HIGH_WORD (ha, a); GET_HIGH_WORD (hb, b); if (hb > ha) { t1 = a; a = b; b = t1; j = ha; ha = hb; hb = j; } } else /* scale a and b by 2^600 */ { ha += 0x25800000; /* a *= 2^600 */ hb += 0x25800000; /* b *= 2^600 */ k -= 600; SET_HIGH_WORD (a, ha); SET_HIGH_WORD (b, hb); } } /* medium size a and b */ w = a - b; if (w > b) { t1 = 0; SET_HIGH_WORD (t1, ha); t2 = a - t1; w = sqrt (t1 * t1 - (b * (-b) - t2 * (a + t1))); } else { a = a + a; y1 = 0; SET_HIGH_WORD (y1, hb); y2 = b - y1; t1 = 0; SET_HIGH_WORD (t1, ha + 0x00100000); t2 = a - t1; w = sqrt (t1 * y1 - (w * (-w) - (t1 * y2 + t2 * b))); } if (k != 0) { uint32_t high; t1 = 1.0; GET_HIGH_WORD (high, t1); SET_HIGH_WORD (t1, high + (k << 20)); w *= t1; math_check_force_underflow_nonneg (w); return w; } else return w; } strong_alias (__ieee754_hypot, __hypot_finite)