/* Euclidean distance function. Double/Binary64 version. Copyright (C) 2021-2023 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* The implementation uses a correction based on 'An Improved Algorithm for hypot(a,b)' by Carlos F. Borges [1] usingthe MyHypot3 with the following changes: - Handle qNaN and sNaN. - Tune the 'widely varying operands' to avoid spurious underflow due the multiplication and fix the return value for upwards rounding mode. - Handle required underflow exception for subnormal results. The expected ULP is ~0.792 or ~0.948 if FMA is used. For FMA, the correction is not used and the error of sqrt (x^2 + y^2) is below 1 ULP if x^2 + y^2 is computed with less than 0.707 ULP error. If |x| >= |2y|, fma (x, x, y^2) has ~0.625 ULP. If |x| < |2y|, fma (|2x|, |y|, (x - y)^2) has ~0.625 ULP. [1] https://arxiv.org/pdf/1904.09481.pdf */ #include #include #include #include #include #include #include #include #include #include "math_config.h" #define SCALE 0x1p-600 #define LARGE_VAL 0x1p+511 #define TINY_VAL 0x1p-459 #define EPS 0x1p-54 static inline double handle_errno (double r) { if (isinf (r)) __set_errno (ERANGE); return r; } /* Hypot kernel. The inputs must be adjusted so that ax >= ay >= 0 and squaring ax, ay and (ax - ay) does not overflow or underflow. */ static inline double kernel (double ax, double ay) { double t1, t2; #ifdef __FP_FAST_FMA t1 = ay + ay; t2 = ax - ay; if (t1 >= ax) return sqrt (fma (t1, ax, t2 * t2)); else return sqrt (fma (ax, ax, ay * ay)); #else double h = sqrt (ax * ax + ay * ay); if (h <= 2.0 * ay) { double delta = h - ay; t1 = ax * (2.0 * delta - ax); t2 = (delta - 2.0 * (ax - ay)) * delta; } else { double delta = h - ax; t1 = 2.0 * delta * (ax - 2.0 * ay); t2 = (4.0 * delta - ay) * ay + delta * delta; } h -= (t1 + t2) / (2.0 * h); return h; #endif } double __hypot (double x, double y) { if (!isfinite(x) || !isfinite(y)) { if ((isinf (x) || isinf (y)) && !issignaling_inline (x) && !issignaling_inline (y)) return INFINITY; return x + y; } x = fabs (x); y = fabs (y); double ax = USE_FMAX_BUILTIN ? fmax (x, y) : (x < y ? y : x); double ay = USE_FMIN_BUILTIN ? fmin (x, y) : (x < y ? x : y); /* If ax is huge, scale both inputs down. */ if (__glibc_unlikely (ax > LARGE_VAL)) { if (__glibc_unlikely (ay <= ax * EPS)) return handle_errno (math_narrow_eval (ax + ay)); return handle_errno (math_narrow_eval (kernel (ax * SCALE, ay * SCALE) / SCALE)); } /* If ay is tiny, scale both inputs up. */ if (__glibc_unlikely (ay < TINY_VAL)) { if (__glibc_unlikely (ax >= ay / EPS)) return math_narrow_eval (ax + ay); ax = math_narrow_eval (kernel (ax / SCALE, ay / SCALE) * SCALE); math_check_force_underflow_nonneg (ax); return ax; } /* Common case: ax is not huge and ay is not tiny. */ if (__glibc_unlikely (ay <= ax * EPS)) return ax + ay; return kernel (ax, ay); } strong_alias (__hypot, __ieee754_hypot) libm_alias_finite (__ieee754_hypot, __hypot) #if LIBM_SVID_COMPAT versioned_symbol (libm, __hypot, hypot, GLIBC_2_35); libm_alias_double_other (__hypot, hypot) #else libm_alias_double (__hypot, hypot) #endif