/* Implementation of gamma function according to ISO C. Copyright (C) 1997-2023 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include #include #include /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's approximation to gamma function. */ static const double gamma_coeff[] = { 0x1.5555555555555p-4, -0xb.60b60b60b60b8p-12, 0x3.4034034034034p-12, -0x2.7027027027028p-12, 0x3.72a3c5631fe46p-12, -0x7.daac36664f1f4p-12, }; #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) /* Return gamma (X), for positive X less than 184, in the form R * 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to avoid overflow or underflow in intermediate calculations. */ static double gamma_positive (double x, int *exp2_adj) { int local_signgam; if (x < 0.5) { *exp2_adj = 0; return __ieee754_exp (__ieee754_lgamma_r (x + 1, &local_signgam)) / x; } else if (x <= 1.5) { *exp2_adj = 0; return __ieee754_exp (__ieee754_lgamma_r (x, &local_signgam)); } else if (x < 6.5) { /* Adjust into the range for using exp (lgamma). */ *exp2_adj = 0; double n = ceil (x - 1.5); double x_adj = x - n; double eps; double prod = __gamma_product (x_adj, 0, n, &eps); return (__ieee754_exp (__ieee754_lgamma_r (x_adj, &local_signgam)) * prod * (1.0 + eps)); } else { double eps = 0; double x_eps = 0; double x_adj = x; double prod = 1; if (x < 12.0) { /* Adjust into the range for applying Stirling's approximation. */ double n = ceil (12.0 - x); x_adj = math_narrow_eval (x + n); x_eps = (x - (x_adj - n)); prod = __gamma_product (x_adj - n, x_eps, n, &eps); } /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, starting by computing pow (X_ADJ, X_ADJ) with a power of 2 factored out. */ double x_adj_int = round (x_adj); double x_adj_frac = x_adj - x_adj_int; int x_adj_log2; double x_adj_mant = __frexp (x_adj, &x_adj_log2); if (x_adj_mant < M_SQRT1_2) { x_adj_log2--; x_adj_mant *= 2.0; } *exp2_adj = x_adj_log2 * (int) x_adj_int; double h1, l1, h2, l2; mul_split (&h1, &l1, __ieee754_pow (x_adj_mant, x_adj), __ieee754_exp2 (x_adj_log2 * x_adj_frac)); mul_split (&h2, &l2, __ieee754_exp (-x_adj), sqrt (2 * M_PI / x_adj)); mul_expansion (&h1, &l1, h1, l1, h2, l2); /* Divide by prod * (1 + eps). */ div_expansion (&h1, &l1, h1, l1, prod, prod * eps); double exp_adj = x_eps * __ieee754_log (x_adj); double bsum = gamma_coeff[NCOEFF - 1]; double x_adj2 = x_adj * x_adj; for (size_t i = 1; i <= NCOEFF - 1; i++) bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; exp_adj += bsum / x_adj; /* Now return (h1+l1) * exp(exp_adj), where exp_adj is small. */ l1 += h1 * __expm1 (exp_adj); return h1 + l1; } } double __ieee754_gamma_r (double x, int *signgamp) { int32_t hx; uint32_t lx; double ret; EXTRACT_WORDS (hx, lx, x); if (__glibc_unlikely (((hx & 0x7fffffff) | lx) == 0)) { /* Return value for x == 0 is Inf with divide by zero exception. */ *signgamp = 0; return 1.0 / x; } if (__builtin_expect (hx < 0, 0) && (uint32_t) hx < 0xfff00000 && rint (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } if (__glibc_unlikely ((unsigned int) hx == 0xfff00000 && lx == 0)) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } if (__glibc_unlikely ((hx & 0x7ff00000) == 0x7ff00000)) { /* Positive infinity (return positive infinity) or NaN (return NaN). */ *signgamp = 0; return x + x; } if (x >= 172.0) { /* Overflow. */ *signgamp = 0; ret = math_narrow_eval (DBL_MAX * DBL_MAX); return ret; } else { SET_RESTORE_ROUND (FE_TONEAREST); if (x > 0.0) { *signgamp = 0; int exp2_adj; double tret = gamma_positive (x, &exp2_adj); ret = __scalbn (tret, exp2_adj); } else if (x >= -DBL_EPSILON / 4.0) { *signgamp = 0; ret = 1.0 / x; } else { double tx = trunc (x); *signgamp = (tx == 2.0 * trunc (tx / 2.0)) ? -1 : 1; if (x <= -184.0) /* Underflow. */ ret = DBL_MIN * DBL_MIN; else { double frac = tx - x; if (frac > 0.5) frac = 1.0 - frac; double sinpix = (frac <= 0.25 ? __sin (M_PI * frac) : __cos (M_PI * (0.5 - frac))); int exp2_adj; double h1, l1, h2, l2; h2 = gamma_positive (-x, &exp2_adj); mul_split (&h1, &l1, sinpix, h2); /* sinpix*gamma_positive(.) = h1 + l1 */ mul_split (&h2, &l2, h1, x); /* h1*x = h2 + l2 */ /* (h1 + l1) * x = h1*x + l1*x = h2 + l2 + l1*x */ l2 += l1 * x; /* x*sinpix*gamma_positive(.) ~ h2 + l2 */ h1 = 0x3.243f6a8885a3p+0; /* binary64 approximation of Pi */ l1 = 0x8.d313198a2e038p-56; /* |h1+l1-Pi| < 3e-33 */ /* Now we divide h1 + l1 by h2 + l2. */ div_expansion (&h1, &l1, h1, l1, h2, l2); ret = __scalbn (-h1, -exp2_adj); math_check_force_underflow_nonneg (ret); } } ret = math_narrow_eval (ret); } if (isinf (ret) && x != 0) { if (*signgamp < 0) { ret = math_narrow_eval (-copysign (DBL_MAX, ret) * DBL_MAX); ret = -ret; } else ret = math_narrow_eval (copysign (DBL_MAX, ret) * DBL_MAX); return ret; } else if (ret == 0) { if (*signgamp < 0) { ret = math_narrow_eval (-copysign (DBL_MIN, ret) * DBL_MIN); ret = -ret; } else ret = math_narrow_eval (copysign (DBL_MIN, ret) * DBL_MIN); return ret; } else return ret; } libm_alias_finite (__ieee754_gamma_r, __gamma_r)