/* Optimized version of the standard memcpy() function. This file is part of the GNU C Library. Copyright (C) 2000 Free Software Foundation, Inc. Contributed by Dan Pop . The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Return: dest Inputs: in0: dest in1: src in2: byte count An assembly implementation of the algorithm used by the generic C version from glibc. The case when all three arguments are multiples of 8 is treated separatedly, for extra performance. In this form, it assumes little endian mode. For big endian mode, sh1 must be computed using an extra instruction: sub sh1 = 64, sh1 and the order of r[MEMLAT] and r[MEMLAT+1] must be reverted in the shrp instruction. */ #include #undef ret #define OP_T_THRES 16 #define OPSIZ 8 #define saved_pfs r14 #define sf r15 #define rescnt r16 #define saved_pr r17 #define saved_lc r18 #define dest r19 #define src r20 #define len r21 #define asrc r22 #define tmp2 r23 #define tmp3 r24 #define tmp4 r25 #define ptable r26 #define ploop56 r27 #define loopaddr r28 #define sh1 r29 #define loopcnt r30 #define value r31 #define dl0 r22 #define dh0 r23 #define dl1 r24 #define dh1 r25 #define dl2 r26 #define dh2 r27 #define dl3 r28 #define dh3 r29 #define LOOP(shift) \ .align 32 ; \ .loop##shift##: \ (p[0]) ld8 r[0] = [asrc], 8 ; /* w1 */ \ (p[MEMLAT+1]) st8 [dest] = value, 8 ; \ (p[MEMLAT]) shrp value = r[MEMLAT], r[MEMLAT+1], shift ; \ nop.b 0 ; \ nop.b 0 ; \ br.ctop.sptk .loop##shift ; \ br.cond.sptk .cpyfew ; /* deal with the remaining bytes */ ENTRY(memcpy) alloc saved_pfs = ar.pfs, 3, 40-3, 0, 40 #include "softpipe.h" .rotr r[MEMLAT + 2], q[MEMLAT + 1], s0[2], s1[2], s2[2], s3[2] .rotf tl0[5], th0[5], tl1[5], th1[5], tl2[5], th2[5], tl3[5], th3[5] .rotp p[MEMLAT + 2] mov ret0 = in0 // return value = dest mov saved_pr = pr // save the predicate registers brp.loop.many.tk.tk.imp .l0, .done - 16 mov saved_lc = ar.lc // save the loop counter or tmp3 = in0, in1 ;; // tmp3 = dest | src or tmp3 = tmp3, in2 // tmp3 = dest | src | len mov dest = in0 // dest mov src = in1 // src mov len = in2 // len sub tmp2 = r0, in0 // tmp2 = -dest cmp.eq p6, p0 = in2, r0 // if (len == 0) (p6) br.cond.spnt .restore_and_exit;;// return dest; and tmp4 = 7, tmp3 // tmp4 = (dest | src | len) & 7 tbit.nz p8, p0 = src, 3 ;; // test for 16-byte boundary align cmp.ne p6, p0 = tmp4, r0 // if ((dest | src | len) & 7 != 0) (p6) br.cond.sptk .next // goto next; // The optimal case, when dest, src and len are all multiples of 8 (p8) ld8 value = [src], 8 // align src if necessary (p8) adds len = -8, len ;; // adjust len accordingly shr.u loopcnt = len, 6 // loopcnt = len / 64 shr.u rescnt = len, 3 // rescnt = len / 8 mov pr.rot = 1 << 16 // set rotating predicates mov ar.ec = 4 + 1 ;; // set the epilog counter cmp.eq p6, p0 = loopcnt, r0 and rescnt = 7, rescnt // resnt = residual word count adds loopcnt = -1, loopcnt // --loopcnt (p8) st8 [dest] = value, 8 // copy one word if aligning (p6) br.cond.spnt .epilog;; // there are < 8 words to copy add sf = 64 * 4, src mov ar.lc = loopcnt // set the loop counter mov s0[1] = src add s1[1] = 16*1, src add s2[1] = 16*2, src add s3[1] = 16*3, src ;; mov dl0 = dest add dh0 = 8 * 1, dest add dl1 = 8 * 2, dest add dh1 = 8 * 3, dest add dl2 = 8 * 4, dest add dh2 = 8 * 5, dest add dl3 = 8 * 6, dest add dh3 = 8 * 7, dest ;; .l0: (p[0]) lfetch.nta [sf], 64 (p[0]) ldfp8 tl0[0], th0[0] = [s0[1]] (p[0]) ldfp8 tl1[0], th1[0] = [s1[1]] (p[0]) ldfp8 tl2[0], th2[0] = [s2[1]] (p[0]) ldfp8 tl3[0], th3[0] = [s3[1]] (p[0]) add s0[0] = 64, s0[1] (p[0]) add s1[0] = 64, s1[1] (p[0]) add s2[0] = 64, s2[1] (p[0]) add s3[0] = 64, s3[1] (p[1]) mov src = s0[1] // for the epilog code (p[4]) stf8 [dl0] = tl0[4], 64 (p[4]) stf8 [dh0] = th0[4], 64 (p[4]) stf8 [dl1] = tl1[4], 64 (p[4]) stf8 [dh1] = th1[4], 64 (p[4]) stf8 [dl2] = tl2[4], 64 (p[4]) stf8 [dh2] = th2[4], 64 (p[4]) stf8 [dl3] = tl3[4], 64 (p[4]) stf8 [dh3] = th3[4], 64 br.ctop.sptk.many .l0 .done: mov dest = dl0 .epilog: cmp.eq p6, p0 = rescnt, r0 // are there any words left to copy? tbit.nz p10, p0 = rescnt, 0 (p6) br.cond.spnt .restore_and_exit ;; (p10) ld8 r[0] = [src], 8 tbit.nz p11, p0 = rescnt, 1 ;; (p11) ld8 r[1] = [src], 8 (p10) st8 [dest] = r[0], 8 ;; (p11) ld8 r[2] = [src], 8 (p11) st8 [dest] = r[1], 8 tbit.nz p12, p0 = rescnt, 2 ;; (p12) ld8 r[3] = [src], 8 (p11) st8 [dest] = r[2], 8 ;; (p12) ld8 r[4] = [src], 8 (p12) st8 [dest] = r[3], 8 ;; (p12) ld8 r[5] = [src], 8 (p12) st8 [dest] = r[4], 8 mov ar.lc = saved_lc ;; // restore the loop counter (p12) ld8 r[6] = [src], 8 (p12) st8 [dest] = r[5], 8 mov ar.pfs = saved_pfs;; // restore the PFS (p12) st8 [dest] = r[6] mov pr = saved_pr, -1 // restore the predicate registers br.ret.sptk.many b0 .next: cmp.ge p6, p0 = OP_T_THRES, len // is len <= OP_T_THRES and loopcnt = 7, tmp2 // loopcnt = -dest % 8 (p6) br.cond.spnt .cpyfew // copy byte by byte ;; cmp.eq p6, p0 = loopcnt, r0 (p6) br.cond.sptk .dest_aligned sub len = len, loopcnt // len -= -dest % 8 adds loopcnt = -1, loopcnt // --loopcnt ;; mov ar.lc = loopcnt .l1: // copy -dest % 8 bytes ld1 value = [src], 1 // value = *src++ ;; st1 [dest] = value, 1 // *dest++ = value br.cloop.dptk .l1 .dest_aligned: and sh1 = 7, src // sh1 = src % 8 and tmp2 = -8, len // tmp2 = len & -OPSIZ and asrc = -8, src // asrc = src & -OPSIZ -- align src shr.u loopcnt = len, 3 // loopcnt = len / 8 and len = 7, len;; // len = len % 8 adds loopcnt = -1, loopcnt // --loopcnt addl tmp4 = @ltoff(.table), gp addl tmp3 = @ltoff(.loop56), gp mov ar.ec = MEMLAT + 1 // set EC mov pr.rot = 1 << 16;; // set rotating predicates mov ar.lc = loopcnt // set LC cmp.eq p6, p0 = sh1, r0 // is the src aligned? (p6) br.cond.sptk .src_aligned add src = src, tmp2 // src += len & -OPSIZ shl sh1 = sh1, 3 // sh1 = 8 * (src % 8) ld8 ploop56 = [tmp3] // ploop56 = &loop56 ld8 ptable = [tmp4];; // ptable = &table add tmp3 = ptable, sh1;; // tmp3 = &table + sh1 mov ar.ec = MEMLAT + 1 + 1 // one more pass needed ld8 tmp4 = [tmp3];; // tmp4 = loop offset sub loopaddr = ploop56,tmp4 // loopadd = &loop56 - loop offset ld8 r[1] = [asrc], 8;; // w0 mov b6 = loopaddr;; br b6 // jump to the appropriate loop LOOP(8) LOOP(16) LOOP(24) LOOP(32) LOOP(40) LOOP(48) LOOP(56) .src_aligned: .l3: (p[0]) ld8 r[0] = [src], 8 (p[MEMLAT]) st8 [dest] = r[MEMLAT], 8 br.ctop.dptk .l3 .cpyfew: cmp.eq p6, p0 = len, r0 // is len == 0 ? adds len = -1, len // --len; (p6) br.cond.spnt .restore_and_exit ;; mov ar.lc = len .l4: ld1 value = [src], 1 ;; st1 [dest] = value, 1 br.cloop.dptk .l4 ;; .restore_and_exit: mov ar.pfs = saved_pfs // restore the PFS mov pr = saved_pr, -1 // restore the predicate registers mov ar.lc = saved_lc // restore the loop counter br.ret.sptk.many b0 .align 8 .table: data8 0 // dummy entry data8 .loop56 - .loop8 data8 .loop56 - .loop16 data8 .loop56 - .loop24 data8 .loop56 - .loop32 data8 .loop56 - .loop40 data8 .loop56 - .loop48 data8 .loop56 - .loop56 END(memcpy)