/* Machine-dependent ELF dynamic relocation inline functions. IA-64 version. Copyright (C) 1995-1997, 2000-2002, 2003 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #ifndef dl_machine_h #define dl_machine_h 1 #define ELF_MACHINE_NAME "ia64" #include <assert.h> #include <string.h> #include <link.h> #include <errno.h> #include <dl-fptr.h> #include <tls.h> /* Translate a processor specific dynamic tag to the index in l_info array. */ #define DT_IA_64(x) (DT_IA_64_##x - DT_LOPROC + DT_NUM) static inline void __attribute__ ((always_inline)) __ia64_init_bootstrap_fdesc_table (struct link_map *map) { Elf64_Addr *boot_table; /* careful: this will be called before got has been relocated... */ asm (";; addl %0 = @gprel (_dl_boot_fptr_table), gp" : "=r"(boot_table)); map->l_mach.fptr_table_len = ELF_MACHINE_BOOT_FPTR_TABLE_LEN; map->l_mach.fptr_table = boot_table; } #define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) \ __ia64_init_bootstrap_fdesc_table (&bootstrap_map); /* Return nonzero iff ELF header is compatible with the running host. */ static inline int __attribute__ ((unused)) elf_machine_matches_host (const Elf64_Ehdr *ehdr) { return ehdr->e_machine == EM_IA_64; } /* Return the link-time address of _DYNAMIC. */ static inline Elf64_Addr __attribute__ ((unused, const)) elf_machine_dynamic (void) { Elf64_Addr *p; __asm__ ( ".section .sdata\n" " .type __dynamic_ltv#, @object\n" " .size __dynamic_ltv#, 8\n" "__dynamic_ltv:\n" " data8 @ltv(_DYNAMIC#)\n" ".previous\n" " addl %0 = @gprel(__dynamic_ltv#), gp ;;" : "=r" (p)); return *p; } /* Return the run-time load address of the shared object. */ static inline Elf64_Addr __attribute__ ((unused)) elf_machine_load_address (void) { Elf64_Addr ip; int *p; __asm__ ( "1: mov %0 = ip\n" ".section .sdata\n" "2: data4 @ltv(1b)\n" " .align 8\n" ".previous\n" " addl %1 = @gprel(2b), gp ;;" : "=r" (ip), "=r" (p)); return ip - (Elf64_Addr) *p; } /* Set up the loaded object described by L so its unrelocated PLT entries will jump to the on-demand fixup code in dl-runtime.c. */ static inline int __attribute__ ((unused, always_inline)) elf_machine_runtime_setup (struct link_map *l, int lazy, int profile) { extern void _dl_runtime_resolve (void); extern void _dl_runtime_profile (void); if (lazy) { register Elf64_Addr gp __asm__ ("gp"); Elf64_Addr *reserve, doit; /* * Careful with the typecast here or it will try to add l-l_addr * pointer elements */ reserve = ((Elf64_Addr *) (l->l_info[DT_IA_64 (PLT_RESERVE)]->d_un.d_ptr + l->l_addr)); /* Identify this shared object. */ reserve[0] = (Elf64_Addr) l; /* This function will be called to perform the relocation. */ if (!profile) doit = (Elf64_Addr) ((struct fdesc *) &_dl_runtime_resolve)->ip; else { if (_dl_name_match_p (GL(dl_profile), l)) { /* This is the object we are looking for. Say that we really want profiling and the timers are started. */ GL(dl_profile_map) = l; } doit = (Elf64_Addr) ((struct fdesc *) &_dl_runtime_profile)->ip; } reserve[1] = doit; reserve[2] = gp; } return lazy; } /* This code is used in dl-runtime.c to call the `fixup' function and then redirect to the address it returns. `fixup()' takes two arguments, however profile_fixup() takes three. The ABI specifies that we will never see more than 8 input registers to a function call, thus it is safe to simply allocate those, and simpler than playing stack games. - 12/09/99 Jes */ #define TRAMPOLINE_TEMPLATE(tramp_name, fixup_name) \ extern void tramp_name (void); \ asm ( \ " .global " #tramp_name "#\n" \ " .proc " #tramp_name "#\n" \ #tramp_name ":\n" \ " { .mmi\n" \ " .prologue\n" \ " .save ar.pfs, r40\n" \ " alloc loc0 = ar.pfs, 8, 6, 3, 0\n" \ " adds r2 = -144, r12\n" \ " adds r3 = -128, r12\n" \ " }\n" \ " { .mii\n" \ " .fframe 160\n" \ " adds r12 = -160, r12\n" \ " .save rp, r41\n" \ " mov loc1 = b0\n" \ " .body\n" \ " mov out2 = b0 /* needed by fixup_profile */\n" \ " ;;\n" \ " }\n" \ " { .mfb\n" \ " mov loc2 = r8 /* preserve struct value register */\n" \ " nop.f 0\n" \ " nop.b 0\n" \ " }\n" \ " { .mii\n" \ " mov loc3 = r9 /* preserve language specific register */\n" \ " mov loc4 = r10 /* preserve language specific register */\n" \ " mov loc5 = r11 /* preserve language specific register */\n" \ " }\n" \ " { .mmi\n" \ " stf.spill [r2] = f8, 32\n" \ " stf.spill [r3] = f9, 32\n" \ " mov out0 = r16\n" \ " ;;\n" \ " }\n" \ " { .mmi\n" \ " stf.spill [r2] = f10, 32\n" \ " stf.spill [r3] = f11, 32\n" \ " shl out1 = r15, 4\n" \ " ;;\n" \ " }\n" \ " { .mmi\n" \ " stf.spill [r2] = f12, 32\n" \ " stf.spill [r3] = f13, 32\n" \ " shladd out1 = r15, 3, out1\n" \ " ;;\n" \ " }\n" \ " { .mmb\n" \ " stf.spill [r2] = f14\n" \ " stf.spill [r3] = f15\n" \ " br.call.sptk.many b0 = " #fixup_name "#\n" \ " }\n" \ " { .mii\n" \ " ld8 r9 = [ret0], 8\n" \ " adds r2 = 16, r12\n" \ " adds r3 = 32, r12\n" \ " ;;\n" \ " }\n" \ " { .mmi\n" \ " ldf.fill f8 = [r2], 32\n" \ " ldf.fill f9 = [r3], 32\n" \ " mov b0 = loc1\n" \ " ;;\n" \ " }\n" \ " { .mmi\n" \ " ldf.fill f10 = [r2], 32\n" \ " ldf.fill f11 = [r3], 32\n" \ " mov b6 = r9\n" \ " ;;\n" \ " }\n" \ " { .mmi\n" \ " ldf.fill f12 = [r2], 32\n" \ " ldf.fill f13 = [r3], 32\n" \ " mov ar.pfs = loc0\n" \ " ;;\n" \ " }\n" \ " { .mmi\n" \ " ldf.fill f14 = [r2], 32\n" \ " ldf.fill f15 = [r3], 32\n" \ " .restore sp /* pop the unwind frame state */\n" \ " adds r12 = 160, r12\n" \ " ;;\n" \ " }\n" \ " { .mii\n" \ " mov r9 = loc3 /* restore language specific register */\n" \ " mov r10 = loc4 /* restore language specific register */\n" \ " mov r11 = loc5 /* restore language specific register */\n" \ " }\n" \ " { .mii\n" \ " ld8 gp = [ret0]\n" \ " mov r8 = loc2 /* restore struct value register */\n" \ " ;;\n" \ " }\n" \ " /* An alloc is needed for the break system call to work.\n" \ " We don't care about the old value of the pfs register. */\n" \ " { .mmb\n" \ " .prologue\n" \ " .body\n" \ " alloc r2 = ar.pfs, 0, 0, 8, 0\n" \ " br.sptk.many b6\n" \ " ;;\n" \ " }\n" \ " .endp " #tramp_name "#\n"); #ifndef PROF #define ELF_MACHINE_RUNTIME_TRAMPOLINE \ TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup); \ TRAMPOLINE_TEMPLATE (_dl_runtime_profile, profile_fixup); #else #define ELF_MACHINE_RUNTIME_TRAMPOLINE \ TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup); \ strong_alias (_dl_runtime_resolve, _dl_runtime_profile); #endif /* Undo the adds out0 = 16, sp below to get at the value we want in __libc_stack_end. */ #define DL_STACK_END(cookie) \ ((void *) (((long) (cookie)) - 16)) /* Initial entry point code for the dynamic linker. The C function `_dl_start' is the real entry point; its return value is the user program's entry point. */ #define RTLD_START asm ( \ ".text\n" \ " .global _start#\n" \ " .proc _start#\n" \ "_start:\n" \ "0: { .mii\n" \ " .prologue\n" \ " .save rp, r0\n" \ " .body\n" \ " .prologue\n" \ " .save ar.pfs, r32\n" \ " alloc loc0 = ar.pfs, 0, 3, 4, 0\n" \ " .body\n" \ " mov r2 = ip\n" \ " addl r3 = @gprel(0b), r0\n" \ " ;;\n" \ " }\n" \ " { .mlx\n" \ " /* Calculate the GP, and save a copy in loc1. */\n" \ " sub gp = r2, r3\n" \ " movl r8 = 0x9804c0270033f\n" \ " ;;\n" \ " }\n" \ " { .mii\n" \ " mov ar.fpsr = r8\n" \ " sub loc1 = r2, r3\n" \ " /* _dl_start wants a pointer to the pointer to the arg block and\n" \ " the arg block starts with an integer, thus the magic 16. */\n" \ " adds out0 = 16, sp\n" \ " }\n" \ " { .bbb\n" \ " br.call.sptk.many b0 = _dl_start#\n" \ " ;;\n" \ " }\n" \ " .endp _start#\n" \ " /* FALLTHRU */\n" \ " .global _dl_start_user#\n" \ " .proc _dl_start_user#\n" \ "_dl_start_user:\n" \ " .prologue\n" \ " .save rp, r0\n" \ " .body\n" \ " .prologue\n" \ " .save ar.pfs, r32\n" \ " .body\n" \ " { .mii\n" \ " addl r3 = @gprel(_dl_skip_args), gp\n" \ " adds r11 = 24, sp /* Load the address of argv. */\n" \ " /* Save the pointer to the user entry point fptr in loc2. */\n" \ " mov loc2 = ret0\n" \ " ;;\n" \ " }\n" \ " { .mii\n" \ " ld4 r3 = [r3]\n" \ " adds r10 = 16, sp /* Load the address of argc. */\n" \ " mov out2 = r11\n" \ " ;;\n" \ " /* See if we were run as a command with the executable file\n" \ " name as an extra leading argument. If so, adjust the argv\n" \ " pointer to skip _dl_skip_args words.\n" \ " Note that _dl_skip_args is an integer, not a long - Jes\n" \ "\n" \ " The stack pointer has to be 16 byte aligned. We cannot simply\n" \ " addjust the stack pointer. We have to move the whole argv and\n" \ " envp and adjust _dl_argv by _dl_skip_args. H.J. */\n" \ " }\n" \ " { .mib\n" \ " ld8 out1 = [r10] /* is argc actually stored as a long\n" \ " or as an int? */\n" \ " addl r2 = @ltoff(_dl_argv), gp\n" \ " ;;\n" \ " }\n" \ " { .mmi\n" \ " ld8 r2 = [r2] /* Get the address of _dl_argv. */\n" \ " sub out1 = out1, r3 /* Get the new argc. */\n" \ " shladd r3 = r3, 3, r0\n" \ " ;;\n" \ " }\n" \ " {\n" \ " .mib\n" \ " ld8 r17 = [r2] /* Get _dl_argv. */\n" \ " add r15 = r11, r3 /* The address of the argv we move */\n" \ " ;;\n" \ " }\n" \ " /* ??? Could probably merge these two loops into 3 bundles.\n" \ " using predication to control which set of copies we're on. */\n" \ "1: /* Copy argv. */\n" \ " { .mfi\n" \ " ld8 r16 = [r15], 8 /* Load the value in the old argv. */\n" \ " ;;\n" \ " }\n" \ " { .mib\n" \ " st8 [r11] = r16, 8 /* Store it in the new argv. */\n" \ " cmp.ne p6, p7 = 0, r16\n" \ "(p6) br.cond.dptk.few 1b\n" \ " ;;\n" \ " }\n" \ " { .mmi\n" \ " mov out3 = r11\n" \ " sub r17 = r17, r3 /* Substract _dl_skip_args. */\n" \ " addl out0 = @gprel(_rtld_local), gp\n" \ " }\n" \ "1: /* Copy env. */\n" \ " { .mfi\n" \ " ld8 r16 = [r15], 8 /* Load the value in the old env. */\n" \ " ;;\n" \ " }\n" \ " { .mib\n" \ " st8 [r11] = r16, 8 /* Store it in the new env. */\n" \ " cmp.ne p6, p7 = 0, r16\n" \ "(p6) br.cond.dptk.few 1b\n" \ " ;;\n" \ " }\n" \ " { .mmb\n" \ " st8 [r10] = out1 /* Record the new argc. */\n" \ " ld8 out0 = [out0] /* get the linkmap */\n" \ " }\n" \ " { .mmb\n" \ " st8 [r2] = r17 /* Load the new _dl_argv. */\n" \ " br.call.sptk.many b0 = _dl_init_internal#\n" \ " ;;\n" \ " }\n" \ " /* Pass our finalizer function to the user,\n" \ " and jump to the user's entry point. */\n" \ " { .mmi\n" \ " ld8 r3 = [loc2], 8\n" \ " mov b0 = r0\n" \ " }\n" \ " { .mmi\n" \ " addl ret0 = @ltoff(@fptr(_dl_fini#)), gp\n" \ " ;;\n" \ " mov b6 = r3\n" \ " }\n" \ " { .mmi\n" \ " ld8 ret0 = [ret0]\n" \ " ld8 gp = [loc2]\n" \ " mov ar.pfs = loc0\n" \ " ;;\n" \ " }\n" \ " { .mfb\n" \ " br.sptk.many b6\n" \ " ;;\n" \ " }\n" \ " .endp _dl_start_user#\n" \ ".previous\n"); #ifndef RTLD_START_SPECIAL_INIT #define RTLD_START_SPECIAL_INIT /* nothing */ #endif /* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or TLS variable, so undefined references should not be allowed to define the value. ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to one of the main executable's symbols, as for a COPY reloc, which we don't use. */ /* ??? Ignore *MSB for now. */ #if defined USE_TLS && (!defined RTLD_BOOTSTRAP || USE___THREAD) #define elf_machine_type_class(type) \ (((type) == R_IA64_IPLTLSB || (type) == R_IA64_DTPMOD64LSB \ || (type) == R_IA64_DTPREL64LSB || (type) == R_IA64_TPREL64LSB) \ * ELF_RTYPE_CLASS_PLT) #else #define elf_machine_type_class(type) \ (((type) == R_IA64_IPLTLSB) * ELF_RTYPE_CLASS_PLT) #endif /* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */ #define ELF_MACHINE_JMP_SLOT R_IA64_IPLTLSB /* According to the IA-64 specific documentation, Rela is always used. */ #define ELF_MACHINE_NO_REL 1 /* Return the address of the entry point. */ #define ELF_MACHINE_START_ADDRESS(map, start) \ DL_STATIC_FUNCTION_ADDRESS (map, start) #define elf_machine_profile_fixup_plt(l, reloc, rel_addr, value) \ elf_machine_fixup_plt (l, reloc, rel_addr, value) #define elf_machine_profile_plt(reloc_addr) ((Elf64_Addr) (reloc_addr)) /* Fixup a PLT entry to bounce directly to the function at VALUE. */ static inline Elf64_Addr elf_machine_fixup_plt (struct link_map *l, lookup_t t, const Elf64_Rela *reloc, Elf64_Addr *reloc_addr, Elf64_Addr value) { /* l is the link_map for the caller, t is the link_map for the object * being called */ /* got has already been relocated in elf_get_dynamic_info() */ reloc_addr[1] = t->l_info[DT_PLTGOT]->d_un.d_ptr; /* we need a "release" here to ensure that the gp is visible before the code entry point is updated: */ ((volatile Elf64_Addr *) reloc_addr)[0] = value; return (Elf64_Addr) reloc_addr; } /* Return the final value of a plt relocation. */ static inline Elf64_Addr elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc, Elf64_Addr value) { /* No need to handle rel vs rela since IA64 is rela only */ return value + reloc->r_addend; } #endif /* !dl_machine_h */ #ifdef RESOLVE_MAP #define R_IA64_TYPE(R) ((R) & -8) #define R_IA64_FORMAT(R) ((R) & 7) #define R_IA64_FORMAT_32MSB 4 #define R_IA64_FORMAT_32LSB 5 #define R_IA64_FORMAT_64MSB 6 #define R_IA64_FORMAT_64LSB 7 /* Perform the relocation specified by RELOC and SYM (which is fully resolved). MAP is the object containing the reloc. */ static inline void elf_machine_rela (struct link_map *map, const Elf64_Rela *reloc, const Elf64_Sym *sym, const struct r_found_version *version, void *const reloc_addr_arg) { Elf64_Addr *const reloc_addr = reloc_addr_arg; const unsigned long int r_type = ELF64_R_TYPE (reloc->r_info); Elf64_Addr value; #if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC && !defined SHARED /* This is defined in rtld.c, but nowhere in the static libc.a; make the reference weak so static programs can still link. This declaration cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP) because rtld.c contains the common defn for _dl_rtld_map, which is incompatible with a weak decl in the same file. */ weak_extern (_dl_rtld_map); #endif /* We cannot use a switch here because we cannot locate the switch jump table until we've self-relocated. */ #if !defined RTLD_BOOTSTRAP || !defined HAVE_Z_COMBRELOC if (__builtin_expect (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_REL64LSB), 0)) { assert (ELF64_R_TYPE (reloc->r_info) == R_IA64_REL64LSB); value = *reloc_addr; # if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC /* Already done in dynamic linker. */ if (map != &GL(dl_rtld_map)) # endif value += map->l_addr; } else #endif if (__builtin_expect (r_type == R_IA64_NONE, 0)) return; else { struct link_map *sym_map; /* RESOLVE_MAP() will return NULL if it fail to locate the symbol. */ if ((sym_map = RESOLVE_MAP (&sym, version, r_type))) { value = sym_map->l_addr + sym->st_value + reloc->r_addend; if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_DIR64LSB)) ;/* No adjustment. */ else if (r_type == R_IA64_IPLTLSB) { elf_machine_fixup_plt (NULL, sym_map, reloc, reloc_addr, value); return; } else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_FPTR64LSB)) value = _dl_make_fptr (sym_map, sym, value); else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_PCREL64LSB)) value -= (Elf64_Addr) reloc_addr & -16; #if defined USE_TLS && (!defined RTLD_BOOTSTRAP || defined USE___THREAD) else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_DTPMOD64LSB)) # ifdef RTLD_BOOTSTRAP /* During startup the dynamic linker is always index 1. */ value = 1; # else /* Get the information from the link map returned by the resolv function. */ value = sym_map->l_tls_modid; else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_DTPREL64LSB)) value -= sym_map->l_addr; # endif else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_TPREL64LSB)) { # ifndef RTLD_BOOTSTRAP CHECK_STATIC_TLS (map, sym_map); # endif value += sym_map->l_tls_offset - sym_map->l_addr; } #endif else _dl_reloc_bad_type (map, r_type, 0); } else value = 0; } /* ??? Ignore MSB and Instruction format for now. */ if (R_IA64_FORMAT (r_type) == R_IA64_FORMAT_64LSB) *reloc_addr = value; else if (R_IA64_FORMAT (r_type) == R_IA64_FORMAT_32LSB) *(int *) reloc_addr = value; else if (r_type == R_IA64_IPLTLSB) { reloc_addr[0] = 0; reloc_addr[1] = 0; } else _dl_reloc_bad_type (map, r_type, 0); } /* Let do-rel.h know that on IA-64 if l_addr is 0, all RELATIVE relocs can be skipped. */ #define ELF_MACHINE_REL_RELATIVE 1 static inline void elf_machine_rela_relative (Elf64_Addr l_addr, const Elf64_Rela *reloc, void *const reloc_addr_arg) { Elf64_Addr *const reloc_addr = reloc_addr_arg; /* ??? Ignore MSB and Instruction format for now. */ assert (ELF64_R_TYPE (reloc->r_info) == R_IA64_REL64LSB); *reloc_addr += l_addr; } /* Perform a RELATIVE reloc on the .got entry that transfers to the .plt. */ static inline void elf_machine_lazy_rel (struct link_map *map, Elf64_Addr l_addr, const Elf64_Rela *reloc) { Elf64_Addr *const reloc_addr = (void *) (l_addr + reloc->r_offset); const unsigned long int r_type = ELF64_R_TYPE (reloc->r_info); if (r_type == R_IA64_IPLTLSB) { reloc_addr[0] += l_addr; reloc_addr[1] += l_addr; } else if (r_type == R_IA64_NONE) return; else _dl_reloc_bad_type (map, r_type, 1); } #endif /* RESOLVE_MAP */