/* ix87 specific implementation of exp(x)-1. Copyright (C) 1996-1997, 2005, 2012 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1996. Based on code by John C. Bowman . Corrections by H.J. Lu (hjl@gnu.ai.mit.edu), 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* Using: e^x - 1 = 2^(x * log2(e)) - 1 */ #include #include .section .rodata .align ALIGNARG(4) ASM_TYPE_DIRECTIVE(minus1,@object) minus1: .double -1.0 ASM_SIZE_DIRECTIVE(minus1) ASM_TYPE_DIRECTIVE(one,@object) one: .double 1.0 ASM_SIZE_DIRECTIVE(one) ASM_TYPE_DIRECTIVE(l2e,@object) l2e: .tfloat 1.442695040888963407359924681002 ASM_SIZE_DIRECTIVE(l2e) #ifdef PIC #define MO(op) op##@GOTOFF(%edx) #else #define MO(op) op #endif .text ENTRY(__expm1f) movzwl 4+2(%esp), %eax xorb $0x80, %ah // invert sign bit (now 1 is "positive") cmpl $0xc2b1, %eax // is num >= 88.5? jae HIDDEN_JUMPTARGET (__expf) flds 4(%esp) // x fxam // Is NaN, +-Inf or +-0? xorb $0x80, %ah cmpl $0xc190, %eax // is num <= -18.0? fstsw %ax movb $0x45, %ch jb 4f // Below -18.0 (may be -NaN or -Inf). andb %ah, %ch #ifdef PIC LOAD_PIC_REG (dx) #endif cmpb $0x01, %ch je 5f // If -NaN, jump. jmp 2f // -large, possibly -Inf. 4: // In range -18.0 to 88.5 (may be +-0 but not NaN or +-Inf). andb %ah, %ch cmpb $0x40, %ch je 3f // If +-0, jump. #ifdef PIC LOAD_PIC_REG (dx) #endif 5: fldt MO(l2e) // log2(e) : x fmulp // log2(e)*x fld %st // log2(e)*x : log2(e)*x frndint // int(log2(e)*x) : log2(e)*x fsubr %st, %st(1) // int(log2(e)*x) : fract(log2(e)*x) fxch // fract(log2(e)*x) : int(log2(e)*x) f2xm1 // 2^fract(log2(e)*x)-1 : int(log2(e)*x) fscale // 2^(log2(e)*x)-2^int(log2(e)*x) : int(log2(e)*x) fxch // int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x) fldl MO(one) // 1 : int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x) fscale // 2^int(log2(e)*x) : int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x) fsubrl MO(one) // 1-2^int(log2(e)*x) : int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x) fstp %st(1) // 1-2^int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x) fsubrp %st, %st(1) // 2^(log2(e)*x) ret 2: fstp %st fldl MO(minus1) // Set result to -1.0. 3: ret END(__expm1f) weak_alias (__expm1f, expm1f)