/* Compute cubic root of float value. Copyright (C) 1997-2021 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include .section .rodata .align ALIGNARG(4) .type f3,@object f3: .double 0.191502161678719066 ASM_SIZE_DIRECTIVE(f3) .type f2,@object f2: .double 0.697570460207922770 ASM_SIZE_DIRECTIVE(f2) .type f1,@object f1: .double 0.492659620528969547 ASM_SIZE_DIRECTIVE(f1) #define CBRT2 1.2599210498948731648 #define ONE_CBRT2 0.793700525984099737355196796584 #define SQR_CBRT2 1.5874010519681994748 #define ONE_SQR_CBRT2 0.629960524947436582364439673883 .type factor,@object .align ALIGNARG(4) factor: .double ONE_SQR_CBRT2 .double ONE_CBRT2 .double 1.0 .double CBRT2 .double SQR_CBRT2 ASM_SIZE_DIRECTIVE(factor) .type two25,@object two25: .byte 0, 0, 0, 0x4c ASM_SIZE_DIRECTIVE(two25) #ifdef PIC #define MO(op) op##@GOTOFF(%ebx) #define MOX(op,x) op##@GOTOFF(%ebx,x,1) #else #define MO(op) op #define MOX(op,x) op(x) #endif .text ENTRY(__cbrtf) movl 4(%esp), %eax xorl %ecx, %ecx movl %eax, %edx andl $0x7fffffff, %eax jz 1f cmpl $0x7f800000, %eax jae 1f #ifdef PIC pushl %ebx cfi_adjust_cfa_offset (4) cfi_rel_offset (ebx, 0) LOAD_PIC_REG (bx) #endif cmpl $0x00800000, %eax jae 2f #ifdef PIC flds 8(%esp) #else flds 4(%esp) #endif fmuls MO(two25) movl $-25, %ecx #ifdef PIC fstps 8(%esp) movl 8(%esp), %eax #else fstps 4(%esp) movl 4(%esp), %eax #endif movl %eax, %edx andl $0x7fffffff, %eax 2: shrl $23, %eax andl $0x807fffff, %edx subl $126, %eax orl $0x3f000000, %edx addl %eax, %ecx #ifdef PIC movl %edx, 8(%esp) flds 8(%esp) /* xm */ #else movl %edx, 4(%esp) flds 4(%esp) /* xm */ #endif fabs /* The following code has two tracks: a) compute the normalized cbrt value b) compute xe/3 and xe%3 The right track computes the value for b) and this is done in an optimized way by avoiding division. But why two tracks at all? Very easy: efficiency. Some FP instruction can overlap with a certain amount of integer (and FP) instructions. So we get (except for the imull) all instructions for free. */ fld %st(0) /* xm : xm */ fmull MO(f3) /* f3*xm : xm */ movl $1431655766, %eax fsubrl MO(f2) /* f2-f3*xm : xm */ imull %ecx fmul %st(1) /* (f2-f3*xm)*xm : xm */ movl %ecx, %eax faddl MO(f1) /* u:=f1+(f2-f3*xm)*xm : xm */ sarl $31, %eax fld %st /* u : u : xm */ subl %eax, %edx fmul %st(1) /* u*u : u : xm */ fld %st(2) /* xm : u*u : u : xm */ fadd %st /* 2*xm : u*u : u : xm */ fxch %st(1) /* u*u : 2*xm : u : xm */ fmul %st(2) /* t2:=u*u*u : 2*xm : u : xm */ movl %edx, %eax fadd %st, %st(1) /* t2 : t2+2*xm : u : xm */ leal (%edx,%edx,2),%edx fadd %st(0) /* 2*t2 : t2+2*xm : u : xm */ subl %edx, %ecx faddp %st, %st(3) /* t2+2*xm : u : 2*t2+xm */ shll $3, %ecx fmulp /* u*(t2+2*xm) : 2*t2+xm */ fdivp %st, %st(1) /* u*(t2+2*xm)/(2*t2+xm) */ fmull MOX(16+factor,%ecx) /* u*(t2+2*xm)/(2*t2+xm)*FACT */ pushl %eax cfi_adjust_cfa_offset (4) fildl (%esp) /* xe/3 : u*(t2+2*xm)/(2*t2+xm)*FACT */ fxch /* u*(t2+2*xm)/(2*t2+xm)*FACT : xe/3 */ fscale /* u*(t2+2*xm)/(2*t2+xm)*FACT*2^xe/3 */ popl %edx cfi_adjust_cfa_offset (-4) #ifdef PIC movl 8(%esp), %eax popl %ebx cfi_adjust_cfa_offset (-4) cfi_restore (ebx) #else movl 4(%esp), %eax #endif testl %eax, %eax fstp %st(1) jns 4f fchs 4: ret /* Return the argument. */ 1: flds 4(%esp) ret END(__cbrtf) libm_alias_float (__cbrt, cbrt)