/* Private function declarations for libm. Copyright (C) 2011-2017 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #define __MSUF_X(x, suffix) x ## suffix #define __MSUF_S(...) __MSUF_X (__VA_ARGS__) #define __MSUF(x) __MSUF_S (x, _MSUF_) #define __MSUF_R_X(x, suffix) x ## suffix ## _r #define __MSUF_R_S(...) __MSUF_R_X (__VA_ARGS__) #define __MSUF_R(x) __MSUF_R_S (x, _MSUF_) /* IEEE style elementary functions. */ extern _Mdouble_ __MSUF (__ieee754_acos) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_acosh) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_asin) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_atan2) (_Mdouble_, _Mdouble_); extern _Mdouble_ __MSUF (__ieee754_atanh) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_cosh) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_exp) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_exp10) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_exp2) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_fmod) (_Mdouble_, _Mdouble_); extern _Mdouble_ __MSUF (__ieee754_gamma) (_Mdouble_); extern _Mdouble_ __MSUF_R (__ieee754_gamma) (_Mdouble_, int *); extern _Mdouble_ __MSUF (__ieee754_hypot) (_Mdouble_, _Mdouble_); extern _Mdouble_ __MSUF (__ieee754_j0) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_j1) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_jn) (int, _Mdouble_); extern _Mdouble_ __MSUF (__ieee754_lgamma) (_Mdouble_); extern _Mdouble_ __MSUF_R (__ieee754_lgamma) (_Mdouble_, int *); extern _Mdouble_ __MSUF (__ieee754_log) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_log10) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_log2) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_pow) (_Mdouble_, _Mdouble_); extern _Mdouble_ __MSUF (__ieee754_remainder) (_Mdouble_, _Mdouble_); extern _Mdouble_ __MSUF (__ieee754_sinh) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_sqrt) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_y0) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_y1) (_Mdouble_); extern _Mdouble_ __MSUF (__ieee754_yn) (int, _Mdouble_); extern _Mdouble_ __MSUF (__ieee754_scalb) (_Mdouble_, _Mdouble_); extern int __MSUF (__ieee754_ilogb) (_Mdouble_); extern int32_t __MSUF (__ieee754_rem_pio2) (_Mdouble_, _Mdouble_ *); /* fdlibm kernel functions. */ extern _Mdouble_ __MSUF (__kernel_sin) (_Mdouble_, _Mdouble_, int); extern _Mdouble_ __MSUF (__kernel_cos) (_Mdouble_, _Mdouble_); extern _Mdouble_ __MSUF (__kernel_tan) (_Mdouble_, _Mdouble_, int); #if defined __MATH_DECLARING_LONG_DOUBLE extern void __MSUF (__kernel_sincos) (_Mdouble_, _Mdouble_, _Mdouble_ *, _Mdouble_ *, int); #endif #if !defined __MATH_DECLARING_LONG_DOUBLE extern int __MSUF (__kernel_rem_pio2) (_Mdouble_ *, _Mdouble_ *, int, int, int, const int32_t *); #endif /* Internal functions. */ #if !defined __MATH_DECLARING_LONG_DOUBLE || !defined NO_LONG_DOUBLE extern _Mdouble_ __MSUF (__copysign) (_Mdouble_ x, _Mdouble_ __y); extern inline _Mdouble_ __MSUF (__copysign) (_Mdouble_ x, _Mdouble_ __y) { return __MSUF (__builtin_copysign) (x, __y); } #endif /* Return X^2 + Y^2 - 1, computed without large cancellation error. It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >= 0.5. */ extern _Mdouble_ __MSUF (__x2y2m1) (_Mdouble_ x, _Mdouble_ y); /* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N - 1, in the form R * (1 + *EPS) where the return value R is an approximation to the product and *EPS is set to indicate the approximate error in the return value. X is such that all the values X + 1, ..., X + N - 1 are exactly representable, and X_EPS / X is small enough that factors quadratic in it can be neglected. */ extern _Mdouble_ __MSUF (__gamma_product) (_Mdouble_ x, _Mdouble_ x_eps, int n, _Mdouble_ *eps); /* Compute lgamma of a negative argument X, if it is in a range (depending on the floating-point format) for which expansion around zeros is used, setting *SIGNGAMP accordingly. */ extern _Mdouble_ __MSUF (__lgamma_neg) (_Mdouble_ x, int *signgamp); /* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS + 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that all the values X + 1, ..., X + N - 1 are exactly representable, and X_EPS / X is small enough that factors quadratic in it can be neglected. */ #if !defined __MATH_DECLARING_FLOAT extern _Mdouble_ __MSUF (__lgamma_product) (_Mdouble_ t, _Mdouble_ x, _Mdouble_ x_eps, int n); #endif #undef __MSUF_X #undef __MSUF_S #undef __MSUF #undef __MSUF_R_X #undef __MSUF_R_S #undef __MSUF_R