/* Thread-local storage handling in the ELF dynamic linker. Generic version. Copyright (C) 2002 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include #include #include #include #include #include /* We don't need any of this if TLS is not supported. */ #ifdef USE_TLS # include # include /* Value used for dtv entries for which the allocation is delayed. */ # define TLS_DTV_UNALLOCATED ((void *) -1l) /* Out-of-memory handler. */ # ifdef SHARED static void __attribute__ ((__noreturn__)) oom (void) { _dl_fatal_printf ("cannot allocate memory for thread-local data: ABORT\n"); } # endif size_t internal_function _dl_next_tls_modid (void) { size_t result; if (__builtin_expect (GL(dl_tls_dtv_gaps), false)) { size_t disp = 0; struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list); /* Note that this branch will never be executed during program start since there are no gaps at that time. Therefore it does not matter that the dl_tls_dtv_slotinfo is not allocated yet when the function is called for the first times. */ result = GL(dl_tls_static_nelem) + 1; /* If the following would not be true we mustn't have assumed there is a gap. */ assert (result <= GL(dl_tls_max_dtv_idx)); do { while (result - disp < runp->len) { if (runp->slotinfo[result - disp].map == NULL) break; ++result; assert (result <= GL(dl_tls_max_dtv_idx) + 1); } if (result - disp < runp->len) break; disp += runp->len; } while ((runp = runp->next) != NULL); if (result >= GL(dl_tls_max_dtv_idx)) { /* The new index must indeed be exactly one higher than the previous high. */ assert (result == GL(dl_tls_max_dtv_idx)); /* There is no gap anymore. */ GL(dl_tls_dtv_gaps) = false; goto nogaps; } } else { /* No gaps, allocate a new entry. */ nogaps: result = ++GL(dl_tls_max_dtv_idx); } return result; } void internal_function _dl_determine_tlsoffset (void) { struct dtv_slotinfo *slotinfo; size_t max_align = __alignof__ (void *); size_t offset; size_t cnt; /* The first element of the dtv slot info list is allocated. */ assert (GL(dl_tls_dtv_slotinfo_list) != NULL); /* There is at this point only one element in the dl_tls_dtv_slotinfo_list list. */ assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL); # if TLS_TCB_AT_TP /* We simply start with zero. */ offset = 0; slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo; for (cnt = 1; slotinfo[cnt].map != NULL; ++cnt) { assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); /* Compute the offset of the next TLS block. */ offset = roundup (offset + slotinfo[cnt].map->l_tls_blocksize, slotinfo[cnt].map->l_tls_align); /* XXX For some architectures we perhaps should store the negative offset. */ slotinfo[cnt].map->l_tls_offset = offset; } /* The thread descriptor (pointed to by the thread pointer) has its own alignment requirement. Adjust the static TLS size and TLS offsets appropriately. */ // XXX How to deal with this. We cannot simply add zero bytes // XXX after the first (closest to the TCB) TLS block since this // XXX would invalidate the offsets the linker creates for the LE // XXX model. GL(dl_tls_static_size) = offset + TLS_TCB_SIZE; # elif TLS_DTV_AT_TP /* The TLS blocks start right after the TCB. */ offset = TLS_TCB_SIZE; /* The first block starts right after the TCB. */ slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo; if (slotinfo[1].map != NULL) { size_t prev_size; offset = roundup (offset, slotinfo[1].map->l_tls_align); slotinfo[1].map->l_tls_offset = offset; max_align = slotinfo[1].map->l_tls_align; prev_size = slotinfo[1].map->l_tls_blocksize; for (cnt = 2; slotinfo[cnt].map != NULL; ++cnt) { assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); /* Compute the offset of the next TLS block. */ offset = roundup (offset + prev_size, slotinfo[cnt].map->l_tls_align); /* XXX For some architectures we perhaps should store the negative offset. */ slotinfo[cnt].map->l_tls_offset = offset; prev_size = slotinfo[cnt].map->l_tls_blocksize; } offset += prev_size; } GL(dl_tls_static_size) = offset; # else # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" # endif /* The alignment requirement for the static TLS block. */ GL(dl_tls_static_align) = MAX (TLS_TCB_ALIGN, max_align); } void * internal_function _dl_allocate_tls_storage (void) { void *result; dtv_t *dtv; size_t dtv_length; /* Allocate a correctly aligned chunk of memory. */ result = __libc_memalign (GL(dl_tls_static_align), GL(dl_tls_static_size)); if (__builtin_expect (result == NULL, 0)) return result; /* We allocate a few more elements in the dtv than are needed for the initial set of modules. This should avoid in most cases expansions of the dtv. */ dtv_length = GL(dl_tls_max_dtv_idx) + DTV_SURPLUS; dtv = (dtv_t *) malloc ((dtv_length + 2) * sizeof (dtv_t)); if (dtv != NULL) { # if TLS_TCB_AT_TP /* The TCB follows the TLS blocks. */ result = (char *) result + GL(dl_tls_static_size) - TLS_TCB_SIZE; # endif /* This is the initial length of the dtv. */ dtv[0].counter = dtv_length; /* Fill in the generation number. */ dtv[1].counter = GL(dl_tls_generation) = 0; /* Initialize all of the rest of the dtv with zero to indicate nothing there. */ memset (dtv + 2, '\0', dtv_length * sizeof (dtv_t)); /* Add the dtv to the thread data structures. */ INSTALL_DTV (result, dtv); } else { free (result); result = NULL; } return result; } INTDEF(_dl_allocate_tls) void * internal_function _dl_allocate_tls_init (void *result) { dtv_t *dtv = GET_DTV (result); struct dtv_slotinfo_list *listp; bool first_block = true; size_t total = 0; /* We have to look prepare the dtv for all currently loaded modules using TLS. For those which are dynamically loaded we add the values indicating deferred allocation. */ listp = GL(dl_tls_dtv_slotinfo_list); while (1) { size_t cnt; for (cnt = first_block ? 1 : 0; cnt < listp->len; ++cnt) { struct link_map *map; void *dest; /* Check for the total number of used slots. */ if (total + cnt > GL(dl_tls_max_dtv_idx)) break; map = listp->slotinfo[cnt].map; if (map == NULL) /* Unused entry. */ continue; if (map->l_type == lt_loaded) { /* For dynamically loaded modules we simply store the value indicating deferred allocation. */ dtv[map->l_tls_modid].pointer = TLS_DTV_UNALLOCATED; continue; } assert (map->l_tls_modid == cnt); assert (map->l_tls_blocksize >= map->l_tls_initimage_size); # if TLS_TCB_AT_TP assert (map->l_tls_offset >= map->l_tls_blocksize); dest = (char *) result - map->l_tls_offset; # elif TLS_DTV_AT_TP dest = (char *) result + map->l_tls_offset; # else # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" # endif /* We don't have to clear the BSS part of the TLS block since mmap is used to allocate the memory which guarantees it is initialized to zero. */ dtv[cnt].pointer = memcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size); } total += cnt; if (total > GL(dl_tls_max_dtv_idx)) break; listp = listp->next; assert (listp != NULL); } return result; } void * internal_function _dl_allocate_tls (void) { return _dl_allocate_tls_init (_dl_allocate_tls_storage ()); } void internal_function _dl_deallocate_tls (void *tcb) { dtv_t *dtv = GET_DTV (tcb); /* The array starts with dtv[-1]. */ free (dtv - 1); free (tcb); } # ifdef SHARED /* The __tls_get_addr function has two basic forms which differ in the arguments. The IA-64 form takes two parameters, the module ID and offset. The form used, among others, on IA-32 takes a reference to a special structure which contain the same information. The second form seems to be more often used (in the moment) so we default to it. Users of the IA-64 form have to provide adequate definitions of the following macros. */ # ifndef GET_ADDR_ARGS # define GET_ADDR_ARGS tls_index *ti # endif # ifndef GET_ADDR_MODULE # define GET_ADDR_MODULE ti->ti_module # endif # ifndef GET_ADDR_OFFSET # define GET_ADDR_OFFSET ti->ti_offset # endif /* Systems which do not have tls_index also probably have to define DONT_USE_TLS_INDEX. */ # ifndef __TLS_GET_ADDR # define __TLS_GET_ADDR __tls_get_addr # endif /* Return the symbol address given the map of the module it is in and the symbol record. This is used in dl-sym.c. */ void * internal_function _dl_tls_symaddr (struct link_map *map, const ElfW(Sym) *ref) { # ifndef DONT_USE_TLS_INDEX tls_index tmp = { .ti_module = map->l_tls_modid, .ti_offset = ref->st_value }; return __TLS_GET_ADDR (&tmp); # else return __TLS_GET_ADDR (map->l_tls_modid, ref->st_value); # endif } static void * allocate_and_init (struct link_map *map) { void *newp; newp = __libc_memalign (map->l_tls_align, map->l_tls_blocksize); if (newp == NULL) oom (); /* Initialize the memory. */ memset (__mempcpy (newp, map->l_tls_initimage, map->l_tls_initimage_size), '\0', map->l_tls_blocksize - map->l_tls_initimage_size); return newp; } /* The generic dynamic and local dynamic model cannot be used in statically linked applications. */ void * __tls_get_addr (GET_ADDR_ARGS) { dtv_t *dtv = THREAD_DTV (); struct link_map *the_map = NULL; void *p; if (__builtin_expect (dtv[0].counter != GL(dl_tls_generation), 0)) { struct dtv_slotinfo_list *listp; size_t idx; /* The global dl_tls_dtv_slotinfo array contains for each module index the generation counter current when the entry was created. This array never shrinks so that all module indices which were valid at some time can be used to access it. Before the first use of a new module index in this function the array was extended appropriately. Access also does not have to be guarded against modifications of the array. It is assumed that pointer-size values can be read atomically even in SMP environments. It is possible that other threads at the same time dynamically load code and therefore add to the slotinfo list. This is a problem since we must not pick up any information about incomplete work. The solution to this is to ignore all dtv slots which were created after the one we are currently interested. We know that dynamic loading for this module is completed and this is the last load operation we know finished. */ idx = GET_ADDR_MODULE; listp = GL(dl_tls_dtv_slotinfo_list); while (idx >= listp->len) { idx -= listp->len; listp = listp->next; } if (dtv[0].counter < listp->slotinfo[idx].gen) { /* The generation counter for the slot is higher than what the current dtv implements. We have to update the whole dtv but only those entries with a generation counter <= the one for the entry we need. */ size_t new_gen = listp->slotinfo[idx].gen; size_t total = 0; /* We have to look through the entire dtv slotinfo list. */ listp = GL(dl_tls_dtv_slotinfo_list); do { size_t cnt; for (cnt = total = 0 ? 1 : 0; cnt < listp->len; ++cnt) { size_t gen = listp->slotinfo[cnt].gen; struct link_map *map; size_t modid; if (gen > new_gen) /* This is a slot for a generation younger than the one we are handling now. It might be incompletely set up so ignore it. */ continue; /* If the entry is older than the current dtv layout we know we don't have to handle it. */ if (gen <= dtv[0].counter) continue; /* If there is no map this means the entry is empty. */ map = listp->slotinfo[cnt].map; if (map == NULL) { /* If this modid was used at some point the memory might still be allocated. */ if (dtv[total + cnt].pointer != TLS_DTV_UNALLOCATED) free (dtv[total + cnt].pointer); continue; } /* Check whether the current dtv array is large enough. */ modid = map->l_tls_modid; assert (total + cnt == modid); if (dtv[-1].counter < modid) { /* Reallocate the dtv. */ dtv_t *newp; size_t newsize = GL(dl_tls_max_dtv_idx) + DTV_SURPLUS; size_t oldsize = dtv[-1].counter; assert (map->l_tls_modid <= newsize); newp = (dtv_t *) realloc (&dtv[-1], (2 + newsize) * sizeof (dtv_t)); if (newp == NULL) oom (); newp[0].counter = newsize; /* Clear the newly allocate part. */ memset (newp + 2 + oldsize, '\0', (newsize - oldsize) * sizeof (dtv_t)); /* Point dtv to the generation counter. */ dtv = &newp[1]; /* Install this new dtv in the thread data structures. */ INSTALL_NEW_DTV (dtv); } /* If there is currently memory allocate for this dtv entry free it. */ /* XXX Ideally we will at some point create a memory pool. */ if (dtv[modid].pointer != TLS_DTV_UNALLOCATED) /* Note that free is called for NULL is well. We deallocate even if it is this dtv entry we are supposed to load. The reason is that we call memalign and not malloc. */ free (dtv[modid].pointer); /* This module is loaded dynamically- We defer memory allocation. */ dtv[modid].pointer = TLS_DTV_UNALLOCATED; if (modid == GET_ADDR_MODULE) the_map = map; } total += listp->len; } while ((listp = listp->next) != NULL); /* This will be the new maximum generation counter. */ dtv[0].counter = new_gen; } } p = dtv[GET_ADDR_MODULE].pointer; if (__builtin_expect (p == TLS_DTV_UNALLOCATED, 0)) { /* The allocation was deferred. Do it now. */ if (the_map == NULL) { /* Find the link map for this module. */ size_t idx = GET_ADDR_MODULE; struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); while (idx >= listp->len) { idx -= listp->len; listp = listp->next; } the_map = listp->slotinfo[idx].map; } p = dtv[GET_ADDR_MODULE].pointer = allocate_and_init (the_map); } return (char *) p + GET_ADDR_OFFSET; } # endif #endif /* use TLS */