/* Single-precision inline helper for vector (Advanced SIMD) expm1 function Copyright (C) 2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #ifndef AARCH64_FPU_V_EXPM1F_INLINE_H #define AARCH64_FPU_V_EXPM1F_INLINE_H #include "v_math.h" #include "poly_advsimd_f32.h" struct v_expm1f_data { float32x4_t poly[5]; float invln2_and_ln2[4]; float32x4_t shift; int32x4_t exponent_bias; }; /* Coefficients generated using fpminimax with degree=5 in [-log(2)/2, log(2)/2]. Exponent bias is asuint(1.0f). invln2_and_ln2 Stores constants: invln2, ln2_lo, ln2_hi, 0. */ #define V_EXPM1F_DATA \ { \ .poly = { V4 (0x1.fffffep-2), V4 (0x1.5554aep-3), V4 (0x1.555736p-5), \ V4 (0x1.12287cp-7), V4 (0x1.6b55a2p-10) }, \ .shift = V4 (0x1.8p23f), .exponent_bias = V4 (0x3f800000), \ .invln2_and_ln2 = { 0x1.715476p+0f, 0x1.62e4p-1f, 0x1.7f7d1cp-20f, 0 }, \ } static inline float32x4_t expm1f_inline (float32x4_t x, const struct v_expm1f_data *d) { /* Helper routine for calculating exp(x) - 1. Copied from v_expm1f_1u6.c, with all special-case handling removed - the calling routine should handle special values if required. */ /* Reduce argument: f in [-ln2/2, ln2/2], i is exact. */ float32x4_t invln2_and_ln2 = vld1q_f32 (d->invln2_and_ln2); float32x4_t j = vsubq_f32 (vfmaq_laneq_f32 (d->shift, x, invln2_and_ln2, 0), d->shift); int32x4_t i = vcvtq_s32_f32 (j); float32x4_t f = vfmsq_laneq_f32 (x, j, invln2_and_ln2, 1); f = vfmsq_laneq_f32 (f, j, invln2_and_ln2, 2); /* Approximate expm1(f) with polynomial P, expm1(f) ~= f + f^2 * P(f). Uses Estrin scheme, where the main _ZGVnN4v_expm1f routine uses Horner. */ float32x4_t f2 = vmulq_f32 (f, f); float32x4_t f4 = vmulq_f32 (f2, f2); float32x4_t p = v_estrin_4_f32 (f, f2, f4, d->poly); p = vfmaq_f32 (f, f2, p); /* t = 2^i. */ int32x4_t u = vaddq_s32 (vshlq_n_s32 (i, 23), d->exponent_bias); float32x4_t t = vreinterpretq_f32_s32 (u); /* expm1(x) ~= p * t + (t - 1). */ return vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t); } #endif