/* Single-precision vector (Advanced SIMD) tan function Copyright (C) 2023 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" #include "poly_advsimd_f32.h" static const struct data { float32x4_t poly[6]; float32x4_t neg_half_pi_1, neg_half_pi_2, neg_half_pi_3, two_over_pi, shift; #if !WANT_SIMD_EXCEPT float32x4_t range_val; #endif } data = { /* Coefficients generated using FPMinimax. */ .poly = { V4 (0x1.55555p-2f), V4 (0x1.11166p-3f), V4 (0x1.b88a78p-5f), V4 (0x1.7b5756p-6f), V4 (0x1.4ef4cep-8f), V4 (0x1.0e1e74p-7f) }, .neg_half_pi_1 = V4 (-0x1.921fb6p+0f), .neg_half_pi_2 = V4 (0x1.777a5cp-25f), .neg_half_pi_3 = V4 (0x1.ee59dap-50f), .two_over_pi = V4 (0x1.45f306p-1f), .shift = V4 (0x1.8p+23f), #if !WANT_SIMD_EXCEPT .range_val = V4 (0x1p15f), #endif }; #define RangeVal v_u32 (0x47000000) /* asuint32(0x1p15f). */ #define TinyBound v_u32 (0x30000000) /* asuint32 (0x1p-31f). */ #define Thresh v_u32 (0x16000000) /* asuint32(RangeVal) - TinyBound. */ /* Special cases (fall back to scalar calls). */ static float32x4_t VPCS_ATTR NOINLINE special_case (float32x4_t x, float32x4_t y, uint32x4_t cmp) { return v_call_f32 (tanf, x, y, cmp); } /* Use a full Estrin scheme to evaluate polynomial. */ static inline float32x4_t eval_poly (float32x4_t z, const struct data *d) { float32x4_t z2 = vmulq_f32 (z, z); #if WANT_SIMD_EXCEPT /* Tiny z (<= 0x1p-31) will underflow when calculating z^4. If fp exceptions are to be triggered correctly, sidestep this by fixing such lanes to 0. */ uint32x4_t will_uflow = vcleq_u32 (vreinterpretq_u32_f32 (vabsq_f32 (z)), TinyBound); if (__glibc_unlikely (v_any_u32 (will_uflow))) z2 = vbslq_f32 (will_uflow, v_f32 (0), z2); #endif float32x4_t z4 = vmulq_f32 (z2, z2); return v_estrin_5_f32 (z, z2, z4, d->poly); } /* Fast implementation of AdvSIMD tanf. Maximum error is 3.45 ULP: __v_tanf(-0x1.e5f0cap+13) got 0x1.ff9856p-1 want 0x1.ff9850p-1. */ float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (tan) (float32x4_t x) { const struct data *d = ptr_barrier (&data); float32x4_t special_arg = x; /* iax >= RangeVal means x, if not inf or NaN, is too large to perform fast regression. */ #if WANT_SIMD_EXCEPT uint32x4_t iax = vreinterpretq_u32_f32 (vabsq_f32 (x)); /* If fp exceptions are to be triggered correctly, also special-case tiny input, as this will load to overflow later. Fix any special lanes to 1 to prevent any exceptions being triggered. */ uint32x4_t special = vcgeq_u32 (vsubq_u32 (iax, TinyBound), Thresh); if (__glibc_unlikely (v_any_u32 (special))) x = vbslq_f32 (special, v_f32 (1.0f), x); #else /* Otherwise, special-case large and special values. */ uint32x4_t special = vcageq_f32 (x, d->range_val); #endif /* n = rint(x/(pi/2)). */ float32x4_t q = vfmaq_f32 (d->shift, d->two_over_pi, x); float32x4_t n = vsubq_f32 (q, d->shift); /* Determine if x lives in an interval, where |tan(x)| grows to infinity. */ uint32x4_t pred_alt = vtstq_u32 (vreinterpretq_u32_f32 (q), v_u32 (1)); /* r = x - n * (pi/2) (range reduction into -pi./4 .. pi/4). */ float32x4_t r; r = vfmaq_f32 (x, d->neg_half_pi_1, n); r = vfmaq_f32 (r, d->neg_half_pi_2, n); r = vfmaq_f32 (r, d->neg_half_pi_3, n); /* If x lives in an interval, where |tan(x)| - is finite, then use a polynomial approximation of the form tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2). - grows to infinity then use symmetries of tangent and the identity tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use the same polynomial approximation of tan as above. */ /* Invert sign of r if odd quadrant. */ float32x4_t z = vmulq_f32 (r, vbslq_f32 (pred_alt, v_f32 (-1), v_f32 (1))); /* Evaluate polynomial approximation of tangent on [-pi/4, pi/4]. */ float32x4_t z2 = vmulq_f32 (r, r); float32x4_t p = eval_poly (z2, d); float32x4_t y = vfmaq_f32 (z, vmulq_f32 (z, z2), p); /* Compute reciprocal and apply if required. */ float32x4_t inv_y = vdivq_f32 (v_f32 (1.0f), y); if (__glibc_unlikely (v_any_u32 (special))) return special_case (special_arg, vbslq_f32 (pred_alt, inv_y, y), special); return vbslq_f32 (pred_alt, inv_y, y); } libmvec_hidden_def (V_NAME_F1 (tan)) HALF_WIDTH_ALIAS_F1 (tan)