/* Single-precision inline helper for vector (SVE) expm1 function Copyright (C) 2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #ifndef AARCH64_FPU_SV_EXPM1F_INLINE_H #define AARCH64_FPU_SV_EXPM1F_INLINE_H #include "sv_math.h" struct sv_expm1f_data { /* These 4 are grouped together so they can be loaded as one quadword, then used with _lane forms of svmla/svmls. */ float32_t c2, c4, ln2_hi, ln2_lo; float32_t c0, c1, c3, inv_ln2, shift; }; /* Coefficients generated using fpminimax. */ #define SV_EXPM1F_DATA \ { \ .c0 = 0x1.fffffep-2, .c1 = 0x1.5554aep-3, .c2 = 0x1.555736p-5, \ .c3 = 0x1.12287cp-7, .c4 = 0x1.6b55a2p-10, \ \ .shift = 0x1.8p23f, .inv_ln2 = 0x1.715476p+0f, .ln2_hi = 0x1.62e4p-1f, \ .ln2_lo = 0x1.7f7d1cp-20f, \ } #define C(i) sv_f32 (d->c##i) static inline svfloat32_t expm1f_inline (svfloat32_t x, svbool_t pg, const struct sv_expm1f_data *d) { /* This vector is reliant on layout of data - it contains constants that can be used with _lane forms of svmla/svmls. Values are: [ coeff_2, coeff_4, ln2_hi, ln2_lo ]. */ svfloat32_t lane_constants = svld1rq (svptrue_b32 (), &d->c2); /* Reduce argument to smaller range: Let i = round(x / ln2) and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 where 2^i is exact because i is an integer. */ svfloat32_t j = svmla_x (pg, sv_f32 (d->shift), x, d->inv_ln2); j = svsub_x (pg, j, d->shift); svint32_t i = svcvt_s32_x (pg, j); svfloat32_t f = svmls_lane (x, j, lane_constants, 2); f = svmls_lane (f, j, lane_constants, 3); /* Approximate expm1(f) using polynomial. Taylor expansion for expm1(x) has the form: x + ax^2 + bx^3 + cx^4 .... So we calculate the polynomial P(f) = a + bf + cf^2 + ... and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ svfloat32_t p12 = svmla_lane (C (1), f, lane_constants, 0); svfloat32_t p34 = svmla_lane (C (3), f, lane_constants, 1); svfloat32_t f2 = svmul_x (pg, f, f); svfloat32_t p = svmla_x (pg, p12, f2, p34); p = svmla_x (pg, C (0), f, p); p = svmla_x (pg, f, f2, p); /* Assemble the result. expm1(x) ~= 2^i * (p + 1) - 1 Let t = 2^i. */ svfloat32_t t = svscale_x (pg, sv_f32 (1), i); return svmla_x (pg, svsub_x (pg, t, 1), p, t); } #endif