/* Double-precision vector (Advanced SIMD) sinh function Copyright (C) 2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" #include "poly_advsimd_f64.h" static const struct data { float64x2_t poly[11], inv_ln2; double m_ln2[2]; float64x2_t shift; uint64x2_t halff; int64x2_t onef; #if WANT_SIMD_EXCEPT uint64x2_t tiny_bound, thresh; #else uint64x2_t large_bound; #endif } data = { /* Generated using Remez, deg=12 in [-log(2)/2, log(2)/2]. */ .poly = { V2 (0x1p-1), V2 (0x1.5555555555559p-3), V2 (0x1.555555555554bp-5), V2 (0x1.111111110f663p-7), V2 (0x1.6c16c16c1b5f3p-10), V2 (0x1.a01a01affa35dp-13), V2 (0x1.a01a018b4ecbbp-16), V2 (0x1.71ddf82db5bb4p-19), V2 (0x1.27e517fc0d54bp-22), V2 (0x1.af5eedae67435p-26), V2 (0x1.1f143d060a28ap-29), }, .inv_ln2 = V2 (0x1.71547652b82fep0), .m_ln2 = {-0x1.62e42fefa39efp-1, -0x1.abc9e3b39803fp-56}, .shift = V2 (0x1.8p52), .halff = V2 (0x3fe0000000000000), .onef = V2 (0x3ff0000000000000), #if WANT_SIMD_EXCEPT /* 2^-26, below which sinh(x) rounds to x. */ .tiny_bound = V2 (0x3e50000000000000), /* asuint(large_bound) - asuint(tiny_bound). */ .thresh = V2 (0x0230000000000000), #else /* 2^9. expm1 helper overflows for large input. */ .large_bound = V2 (0x4080000000000000), #endif }; static inline float64x2_t expm1_inline (float64x2_t x) { const struct data *d = ptr_barrier (&data); /* Reduce argument: exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 where i = round(x / ln2) and f = x - i * ln2 (f in [-ln2/2, ln2/2]). */ float64x2_t j = vsubq_f64 (vfmaq_f64 (d->shift, d->inv_ln2, x), d->shift); int64x2_t i = vcvtq_s64_f64 (j); float64x2_t m_ln2 = vld1q_f64 (d->m_ln2); float64x2_t f = vfmaq_laneq_f64 (x, j, m_ln2, 0); f = vfmaq_laneq_f64 (f, j, m_ln2, 1); /* Approximate expm1(f) using polynomial. */ float64x2_t f2 = vmulq_f64 (f, f); float64x2_t f4 = vmulq_f64 (f2, f2); float64x2_t f8 = vmulq_f64 (f4, f4); float64x2_t p = vfmaq_f64 (f, f2, v_estrin_10_f64 (f, f2, f4, f8, d->poly)); /* t = 2^i. */ float64x2_t t = vreinterpretq_f64_u64 ( vreinterpretq_u64_s64 (vaddq_s64 (vshlq_n_s64 (i, 52), d->onef))); /* expm1(x) ~= p * t + (t - 1). */ return vfmaq_f64 (vsubq_f64 (t, v_f64 (1.0)), p, t); } static float64x2_t NOINLINE VPCS_ATTR special_case (float64x2_t x) { return v_call_f64 (sinh, x, x, v_u64 (-1)); } /* Approximation for vector double-precision sinh(x) using expm1. sinh(x) = (exp(x) - exp(-x)) / 2. The greatest observed error is 2.57 ULP: _ZGVnN2v_sinh (0x1.9fb1d49d1d58bp-2) got 0x1.ab34e59d678dcp-2 want 0x1.ab34e59d678d9p-2. */ float64x2_t VPCS_ATTR V_NAME_D1 (sinh) (float64x2_t x) { const struct data *d = ptr_barrier (&data); float64x2_t ax = vabsq_f64 (x); uint64x2_t sign = veorq_u64 (vreinterpretq_u64_f64 (x), vreinterpretq_u64_f64 (ax)); float64x2_t halfsign = vreinterpretq_f64_u64 (vorrq_u64 (sign, d->halff)); #if WANT_SIMD_EXCEPT uint64x2_t special = vcgeq_u64 ( vsubq_u64 (vreinterpretq_u64_f64 (ax), d->tiny_bound), d->thresh); #else uint64x2_t special = vcgeq_u64 (vreinterpretq_u64_f64 (ax), d->large_bound); #endif /* Fall back to scalar variant for all lanes if any of them are special. */ if (__glibc_unlikely (v_any_u64 (special))) return special_case (x); /* Up to the point that expm1 overflows, we can use it to calculate sinh using a slight rearrangement of the definition of sinh. This allows us to retain acceptable accuracy for very small inputs. */ float64x2_t t = expm1_inline (ax); t = vaddq_f64 (t, vdivq_f64 (t, vaddq_f64 (t, v_f64 (1.0)))); return vmulq_f64 (t, halfsign); }