/* Single-precision vector (SVE) log2 function Copyright (C) 2023-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "sv_math.h" static const struct data { float poly_02468[5]; float poly_1357[4]; uint32_t off, lower; } data = { .poly_1357 = { /* Coefficients copied from the AdvSIMD routine, then rearranged so that coeffs 1, 3, 5 and 7 can be loaded as a single quad-word, hence used with _lane variant of MLA intrinsic. */ -0x1.715458p-1f, -0x1.7171a4p-2f, -0x1.e5143ep-3f, -0x1.c675bp-3f }, .poly_02468 = { 0x1.715476p0f, 0x1.ec701cp-2f, 0x1.27a0b8p-2f, 0x1.9d8ecap-3f, 0x1.9e495p-3f }, .off = 0x3f2aaaab, /* Lower bound is the smallest positive normal float 0x00800000. For optimised register use subnormals are detected after offset has been subtracted, so lower bound is 0x0080000 - offset (which wraps around). */ .lower = 0x00800000 - 0x3f2aaaab }; #define Thresh (0x7f000000) /* asuint32(inf) - 0x00800000. */ #define MantissaMask (0x007fffff) static svfloat32_t NOINLINE special_case (svuint32_t u_off, svfloat32_t p, svfloat32_t r2, svfloat32_t y, svbool_t cmp) { return sv_call_f32 ( log2f, svreinterpret_f32 (svadd_x (svptrue_b32 (), u_off, data.off)), svmla_x (svptrue_b32 (), p, r2, y), cmp); } /* Optimised implementation of SVE log2f, using the same algorithm and polynomial as AdvSIMD log2f. Maximum error is 2.48 ULPs: SV_NAME_F1 (log2)(0x1.558174p+0) got 0x1.a9be84p-2 want 0x1.a9be8p-2. */ svfloat32_t SV_NAME_F1 (log2) (svfloat32_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); svuint32_t u_off = svreinterpret_u32 (x); u_off = svsub_x (pg, u_off, d->off); svbool_t special = svcmpge (pg, svsub_x (pg, u_off, d->lower), Thresh); /* x = 2^n * (1+r), where 2/3 < 1+r < 4/3. */ svfloat32_t n = svcvt_f32_x ( pg, svasr_x (pg, svreinterpret_s32 (u_off), 23)); /* Sign-extend. */ svuint32_t u = svand_x (pg, u_off, MantissaMask); u = svadd_x (pg, u, d->off); svfloat32_t r = svsub_x (pg, svreinterpret_f32 (u), 1.0f); /* y = log2(1+r) + n. */ svfloat32_t r2 = svmul_x (svptrue_b32 (), r, r); /* Evaluate polynomial using pairwise Horner scheme. */ svfloat32_t p_1357 = svld1rq (svptrue_b32 (), &d->poly_1357[0]); svfloat32_t q_01 = svmla_lane (sv_f32 (d->poly_02468[0]), r, p_1357, 0); svfloat32_t q_23 = svmla_lane (sv_f32 (d->poly_02468[1]), r, p_1357, 1); svfloat32_t q_45 = svmla_lane (sv_f32 (d->poly_02468[2]), r, p_1357, 2); svfloat32_t q_67 = svmla_lane (sv_f32 (d->poly_02468[3]), r, p_1357, 3); svfloat32_t y = svmla_x (pg, q_67, r2, sv_f32 (d->poly_02468[4])); y = svmla_x (pg, q_45, r2, y); y = svmla_x (pg, q_23, r2, y); y = svmla_x (pg, q_01, r2, y); if (__glibc_unlikely (svptest_any (pg, special))) return special_case (u_off, n, r, y, special); return svmla_x (svptrue_b32 (), n, r, y); }