/* Double-precision AdvSIMD log1p Copyright (C) 2023-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" #include "poly_advsimd_f64.h" const static struct data { float64x2_t poly[19], ln2[2]; uint64x2_t hf_rt2_top, one_m_hf_rt2_top, umask, inf, minus_one; int64x2_t one_top; } data = { /* Generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1]. */ .poly = { V2 (-0x1.ffffffffffffbp-2), V2 (0x1.55555555551a9p-2), V2 (-0x1.00000000008e3p-2), V2 (0x1.9999999a32797p-3), V2 (-0x1.555555552fecfp-3), V2 (0x1.249248e071e5ap-3), V2 (-0x1.ffffff8bf8482p-4), V2 (0x1.c71c8f07da57ap-4), V2 (-0x1.9999ca4ccb617p-4), V2 (0x1.7459ad2e1dfa3p-4), V2 (-0x1.554d2680a3ff2p-4), V2 (0x1.3b4c54d487455p-4), V2 (-0x1.2548a9ffe80e6p-4), V2 (0x1.0f389a24b2e07p-4), V2 (-0x1.eee4db15db335p-5), V2 (0x1.e95b494d4a5ddp-5), V2 (-0x1.15fdf07cb7c73p-4), V2 (0x1.0310b70800fcfp-4), V2 (-0x1.cfa7385bdb37ep-6) }, .ln2 = { V2 (0x1.62e42fefa3800p-1), V2 (0x1.ef35793c76730p-45) }, /* top32(asuint64(sqrt(2)/2)) << 32. */ .hf_rt2_top = V2 (0x3fe6a09e00000000), /* (top32(asuint64(1)) - top32(asuint64(sqrt(2)/2))) << 32. */ .one_m_hf_rt2_top = V2 (0x00095f6200000000), .umask = V2 (0x000fffff00000000), .one_top = V2 (0x3ff), .inf = V2 (0x7ff0000000000000), .minus_one = V2 (0xbff0000000000000) }; #define BottomMask v_u64 (0xffffffff) static float64x2_t VPCS_ATTR NOINLINE special_case (float64x2_t x, float64x2_t y, uint64x2_t special) { return v_call_f64 (log1p, x, y, special); } /* Vector log1p approximation using polynomial on reduced interval. Routine is a modification of the algorithm used in scalar log1p, with no shortcut for k=0 and no narrowing for f and k. Maximum observed error is 2.45 ULP: _ZGVnN2v_log1p(0x1.658f7035c4014p+11) got 0x1.fd61d0727429dp+2 want 0x1.fd61d0727429fp+2 . */ VPCS_ATTR float64x2_t V_NAME_D1 (log1p) (float64x2_t x) { const struct data *d = ptr_barrier (&data); uint64x2_t ix = vreinterpretq_u64_f64 (x); uint64x2_t ia = vreinterpretq_u64_f64 (vabsq_f64 (x)); uint64x2_t special = vcgeq_u64 (ia, d->inf); #if WANT_SIMD_EXCEPT special = vorrq_u64 (special, vcgeq_u64 (ix, vreinterpretq_u64_f64 (v_f64 (-1)))); if (__glibc_unlikely (v_any_u64 (special))) x = v_zerofy_f64 (x, special); #else special = vorrq_u64 (special, vcleq_f64 (x, v_f64 (-1))); #endif /* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f is in [sqrt(2)/2, sqrt(2)]): log1p(x) = k*log(2) + log1p(f). f may not be representable exactly, so we need a correction term: let m = round(1 + x), c = (1 + x) - m. c << m: at very small x, log1p(x) ~ x, hence: log(1+x) - log(m) ~ c/m. We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */ /* Obtain correctly scaled k by manipulation in the exponent. The scalar algorithm casts down to 32-bit at this point to calculate k and u_red. We stay in double-width to obtain f and k, using the same constants as the scalar algorithm but shifted left by 32. */ float64x2_t m = vaddq_f64 (x, v_f64 (1)); uint64x2_t mi = vreinterpretq_u64_f64 (m); uint64x2_t u = vaddq_u64 (mi, d->one_m_hf_rt2_top); int64x2_t ki = vsubq_s64 (vreinterpretq_s64_u64 (vshrq_n_u64 (u, 52)), d->one_top); float64x2_t k = vcvtq_f64_s64 (ki); /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */ uint64x2_t utop = vaddq_u64 (vandq_u64 (u, d->umask), d->hf_rt2_top); uint64x2_t u_red = vorrq_u64 (utop, vandq_u64 (mi, BottomMask)); float64x2_t f = vsubq_f64 (vreinterpretq_f64_u64 (u_red), v_f64 (1)); /* Correction term c/m. */ float64x2_t cm = vdivq_f64 (vsubq_f64 (x, vsubq_f64 (m, v_f64 (1))), m); /* Approximate log1p(x) on the reduced input using a polynomial. Because log1p(0)=0 we choose an approximation of the form: x + C0*x^2 + C1*x^3 + C2x^4 + ... Hence approximation has the form f + f^2 * P(f) where P(x) = C0 + C1*x + C2x^2 + ... Assembling this all correctly is dealt with at the final step. */ float64x2_t f2 = vmulq_f64 (f, f); float64x2_t p = v_pw_horner_18_f64 (f, f2, d->poly); float64x2_t ylo = vfmaq_f64 (cm, k, d->ln2[1]); float64x2_t yhi = vfmaq_f64 (f, k, d->ln2[0]); float64x2_t y = vaddq_f64 (ylo, yhi); if (__glibc_unlikely (v_any_u64 (special))) return special_case (vreinterpretq_f64_u64 (ix), vfmaq_f64 (y, f2, p), special); return vfmaq_f64 (y, f2, p); }