/* Double-precision vector (AdvSIMD) log10 function Copyright (C) 2023-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" #include "poly_advsimd_f64.h" #define N (1 << V_LOG10_TABLE_BITS) static const struct data { uint64x2_t min_norm; uint32x4_t special_bound; float64x2_t poly[5]; float64x2_t invln10, log10_2, ln2; uint64x2_t sign_exp_mask; } data = { /* Computed from log coefficients divided by log(10) then rounded to double precision. */ .poly = { V2 (-0x1.bcb7b1526e506p-3), V2 (0x1.287a7636be1d1p-3), V2 (-0x1.bcb7b158af938p-4), V2 (0x1.63c78734e6d07p-4), V2 (-0x1.287461742fee4p-4) }, .ln2 = V2 (0x1.62e42fefa39efp-1), .invln10 = V2 (0x1.bcb7b1526e50ep-2), .log10_2 = V2 (0x1.34413509f79ffp-2), .min_norm = V2 (0x0010000000000000), /* asuint64(0x1p-1022). */ .special_bound = V4 (0x7fe00000), /* asuint64(inf) - min_norm. */ .sign_exp_mask = V2 (0xfff0000000000000), }; #define Off v_u64 (0x3fe6900900000000) #define IndexMask (N - 1) #define T(s, i) __v_log10_data.s[i] struct entry { float64x2_t invc; float64x2_t log10c; }; static inline struct entry lookup (uint64x2_t i) { struct entry e; uint64_t i0 = (i[0] >> (52 - V_LOG10_TABLE_BITS)) & IndexMask; uint64_t i1 = (i[1] >> (52 - V_LOG10_TABLE_BITS)) & IndexMask; float64x2_t e0 = vld1q_f64 (&__v_log10_data.table[i0].invc); float64x2_t e1 = vld1q_f64 (&__v_log10_data.table[i1].invc); e.invc = vuzp1q_f64 (e0, e1); e.log10c = vuzp2q_f64 (e0, e1); return e; } static float64x2_t VPCS_ATTR NOINLINE special_case (float64x2_t x, float64x2_t y, float64x2_t hi, float64x2_t r2, uint32x2_t special) { return v_call_f64 (log10, x, vfmaq_f64 (hi, r2, y), vmovl_u32 (special)); } /* Fast implementation of double-precision vector log10 is a slight modification of double-precision vector log. Max ULP error: < 2.5 ulp (nearest rounding.) Maximum measured at 2.46 ulp for x in [0.96, 0.97] _ZGVnN2v_log10(0x1.13192407fcb46p+0) got 0x1.fff6be3cae4bbp-6 want 0x1.fff6be3cae4b9p-6. */ float64x2_t VPCS_ATTR V_NAME_D1 (log10) (float64x2_t x) { const struct data *d = ptr_barrier (&data); uint64x2_t ix = vreinterpretq_u64_f64 (x); uint32x2_t special = vcge_u32 (vsubhn_u64 (ix, d->min_norm), vget_low_u32 (d->special_bound)); /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. The range is split into N subintervals. The ith subinterval contains z and c is near its center. */ uint64x2_t tmp = vsubq_u64 (ix, Off); int64x2_t k = vshrq_n_s64 (vreinterpretq_s64_u64 (tmp), 52); uint64x2_t iz = vsubq_u64 (ix, vandq_u64 (tmp, d->sign_exp_mask)); float64x2_t z = vreinterpretq_f64_u64 (iz); struct entry e = lookup (tmp); /* log10(x) = log1p(z/c-1)/log(10) + log10(c) + k*log10(2). */ float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, e.invc); float64x2_t kd = vcvtq_f64_s64 (k); /* hi = r / log(10) + log10(c) + k*log10(2). Constants in v_log10_data.c are computed (in extended precision) as e.log10c := e.logc * ivln10. */ float64x2_t w = vfmaq_f64 (e.log10c, r, d->invln10); /* y = log10(1+r) + n * log10(2). */ float64x2_t hi = vfmaq_f64 (w, kd, d->log10_2); /* y = r2*(A0 + r*A1 + r2*(A2 + r*A3 + r2*A4)) + hi. */ float64x2_t r2 = vmulq_f64 (r, r); float64x2_t y = v_pw_horner_4_f64 (r, r2, d->poly); if (__glibc_unlikely (v_any_u32h (special))) return special_case (x, y, hi, r2, special); return vfmaq_f64 (hi, r2, y); }