/* Double-precision x^y function. Copyright (C) 2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "math_config.h" /* Scalar version of pow used for fallbacks in vector implementations. */ /* Data is defined in v_pow_log_data.c. */ #define N_LOG (1 << V_POW_LOG_TABLE_BITS) #define Off 0x3fe6955500000000 #define As __v_pow_log_data.poly /* Data is defined in v_pow_exp_data.c. */ #define N_EXP (1 << V_POW_EXP_TABLE_BITS) #define SignBias (0x800 << V_POW_EXP_TABLE_BITS) #define SmallExp 0x3c9 /* top12(0x1p-54). */ #define BigExp 0x408 /* top12(512.0). */ #define ThresExp 0x03f /* BigExp - SmallExp. */ #define InvLn2N __v_pow_exp_data.n_over_ln2 #define Ln2HiN __v_pow_exp_data.ln2_over_n_hi #define Ln2LoN __v_pow_exp_data.ln2_over_n_lo #define SBits __v_pow_exp_data.sbits #define Cs __v_pow_exp_data.poly /* Constants associated with pow. */ #define SmallPowX 0x001 /* top12(0x1p-126). */ #define BigPowX 0x7ff /* top12(INFINITY). */ #define ThresPowX 0x7fe /* BigPowX - SmallPowX. */ #define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */ #define BigPowY 0x43e /* top12(0x1.749p62). */ #define ThresPowY 0x080 /* BigPowY - SmallPowY. */ /* Top 12 bits of a double (sign and exponent bits). */ static inline uint32_t top12 (double x) { return asuint64 (x) >> 52; } /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about additional 15 bits precision. IX is the bit representation of x, but normalized in the subnormal range using the sign bit for the exponent. */ static inline double log_inline (uint64_t ix, double *tail) { /* x = 2^k z; where z is in range [Off,2*Off) and exact. The range is split into N subintervals. The ith subinterval contains z and c is near its center. */ uint64_t tmp = ix - Off; int i = (tmp >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1); int k = (int64_t) tmp >> 52; /* arithmetic shift. */ uint64_t iz = ix - (tmp & 0xfffULL << 52); double z = asdouble (iz); double kd = (double) k; /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ double invc = __v_pow_log_data.invc[i]; double logc = __v_pow_log_data.logc[i]; double logctail = __v_pow_log_data.logctail[i]; /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ double r = fma (z, invc, -1.0); /* k*Ln2 + log(c) + r. */ double t1 = kd * __v_pow_log_data.ln2_hi + logc; double t2 = t1 + r; double lo1 = kd * __v_pow_log_data.ln2_lo + logctail; double lo2 = t1 - t2 + r; /* Evaluation is optimized assuming superscalar pipelined execution. */ double ar = As[0] * r; double ar2 = r * ar; double ar3 = r * ar2; /* k*Ln2 + log(c) + r + A[0]*r*r. */ double hi = t2 + ar2; double lo3 = fma (ar, r, -ar2); double lo4 = t2 - hi + ar2; /* p = log1p(r) - r - A[0]*r*r. */ double p = (ar3 * (As[1] + r * As[2] + ar2 * (As[3] + r * As[4] + ar2 * (As[5] + r * As[6])))); double lo = lo1 + lo2 + lo3 + lo4 + p; double y = hi + lo; *tail = hi - y + lo; return y; } /* Handle cases that may overflow or underflow when computing the result that is scale*(1+TMP) without intermediate rounding. The bit representation of scale is in SBITS, however it has a computed exponent that may have overflown into the sign bit so that needs to be adjusted before using it as a double. (int32_t)KI is the k used in the argument reduction and exponent adjustment of scale, positive k here means the result may overflow and negative k means the result may underflow. */ static inline double special_case (double tmp, uint64_t sbits, uint64_t ki) { double scale, y; if ((ki & 0x80000000) == 0) { /* k > 0, the exponent of scale might have overflowed by <= 460. */ sbits -= 1009ull << 52; scale = asdouble (sbits); y = 0x1p1009 * (scale + scale * tmp); return y; } /* k < 0, need special care in the subnormal range. */ sbits += 1022ull << 52; /* Note: sbits is signed scale. */ scale = asdouble (sbits); y = scale + scale * tmp; #if WANT_SIMD_EXCEPT if (fabs (y) < 1.0) { /* Round y to the right precision before scaling it into the subnormal range to avoid double rounding that can cause 0.5+E/2 ulp error where E is the worst-case ulp error outside the subnormal range. So this is only useful if the goal is better than 1 ulp worst-case error. */ double hi, lo, one = 1.0; if (y < 0.0) one = -1.0; lo = scale - y + scale * tmp; hi = one + y; lo = one - hi + y + lo; y = (hi + lo) - one; /* Fix the sign of 0. */ if (y == 0.0) y = asdouble (sbits & 0x8000000000000000); /* The underflow exception needs to be signaled explicitly. */ force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022); } #endif y = 0x1p-1022 * y; return y; } /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */ static inline double exp_inline (double x, double xtail, uint32_t sign_bias) { uint32_t abstop = top12 (x) & 0x7ff; if (__glibc_unlikely (abstop - SmallExp >= ThresExp)) { if (abstop - SmallExp >= 0x80000000) { /* Avoid spurious underflow for tiny x. */ /* Note: 0 is common input. */ return sign_bias ? -1.0 : 1.0; } if (abstop >= top12 (1024.0)) { /* Note: inf and nan are already handled. */ /* Skip errno handling. */ #if WANT_SIMD_EXCEPT return asuint64 (x) >> 63 ? __math_uflow (sign_bias) : __math_oflow (sign_bias); #else double res_uoflow = asuint64 (x) >> 63 ? 0.0 : INFINITY; return sign_bias ? -res_uoflow : res_uoflow; #endif } /* Large x is special cased below. */ abstop = 0; } /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ double z = InvLn2N * x; double kd = round (z); uint64_t ki = lround (z); double r = x - kd * Ln2HiN - kd * Ln2LoN; /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ r += xtail; /* 2^(k/N) ~= scale. */ uint64_t idx = ki & (N_EXP - 1); uint64_t top = (ki + sign_bias) << (52 - V_POW_EXP_TABLE_BITS); /* This is only a valid scale when -1023*N < k < 1024*N. */ uint64_t sbits = SBits[idx] + top; /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */ /* Evaluation is optimized assuming superscalar pipelined execution. */ double r2 = r * r; double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]); if (__glibc_unlikely (abstop == 0)) return special_case (tmp, sbits, ki); double scale = asdouble (sbits); /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there is no spurious underflow here even without fma. */ return scale + scale * tmp; } /* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. A version of exp_inline that is not inlined and for which sign_bias is equal to 0. */ static double NOINLINE exp_nosignbias (double x, double xtail) { uint32_t abstop = top12 (x) & 0x7ff; if (__glibc_unlikely (abstop - SmallExp >= ThresExp)) { /* Avoid spurious underflow for tiny x. */ if (abstop - SmallExp >= 0x80000000) return 1.0; /* Note: inf and nan are already handled. */ if (abstop >= top12 (1024.0)) #if WANT_SIMD_EXCEPT return asuint64 (x) >> 63 ? __math_uflow (0) : __math_oflow (0); #else return asuint64 (x) >> 63 ? 0.0 : INFINITY; #endif /* Large x is special cased below. */ abstop = 0; } /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */ double z = InvLn2N * x; double kd = round (z); uint64_t ki = lround (z); double r = x - kd * Ln2HiN - kd * Ln2LoN; /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ r += xtail; /* 2^(k/N) ~= scale. */ uint64_t idx = ki & (N_EXP - 1); uint64_t top = ki << (52 - V_POW_EXP_TABLE_BITS); /* This is only a valid scale when -1023*N < k < 1024*N. */ uint64_t sbits = SBits[idx] + top; /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ double r2 = r * r; double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]); if (__glibc_unlikely (abstop == 0)) return special_case (tmp, sbits, ki); double scale = asdouble (sbits); /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there is no spurious underflow here even without fma. */ return scale + scale * tmp; } /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is the bit representation of a non-zero finite floating-point value. */ static inline int checkint (uint64_t iy) { int e = iy >> 52 & 0x7ff; if (e < 0x3ff) return 0; if (e > 0x3ff + 52) return 2; if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) return 0; if (iy & (1ULL << (0x3ff + 52 - e))) return 1; return 2; } /* Returns 1 if input is the bit representation of 0, infinity or nan. */ static inline int zeroinfnan (uint64_t i) { return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1; } static double NOINLINE pow_scalar_special_case (double x, double y) { uint32_t sign_bias = 0; uint64_t ix, iy; uint32_t topx, topy; ix = asuint64 (x); iy = asuint64 (y); topx = top12 (x); topy = top12 (y); if (__glibc_unlikely (topx - SmallPowX >= ThresPowX || (topy & 0x7ff) - SmallPowY >= ThresPowY)) { /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ /* Special cases: (x < 0x1p-126 or inf or nan) or (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ if (__glibc_unlikely (zeroinfnan (iy))) { if (2 * iy == 0) return issignaling_inline (x) ? x + y : 1.0; if (ix == asuint64 (1.0)) return issignaling_inline (y) ? x + y : 1.0; if (2 * ix > 2 * asuint64 (INFINITY) || 2 * iy > 2 * asuint64 (INFINITY)) return x + y; if (2 * ix == 2 * asuint64 (1.0)) return 1.0; if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63)) return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ return y * y; } if (__glibc_unlikely (zeroinfnan (ix))) { double x2 = x * x; if (ix >> 63 && checkint (iy) == 1) { x2 = -x2; sign_bias = 1; } #if WANT_SIMD_EXCEPT if (2 * ix == 0 && iy >> 63) return __math_divzero (sign_bias); #endif return iy >> 63 ? 1 / x2 : x2; } /* Here x and y are non-zero finite. */ if (ix >> 63) { /* Finite x < 0. */ int yint = checkint (iy); if (yint == 0) #if WANT_SIMD_EXCEPT return __math_invalid (x); #else return __builtin_nan (""); #endif if (yint == 1) sign_bias = SignBias; ix &= 0x7fffffffffffffff; topx &= 0x7ff; } if ((topy & 0x7ff) - SmallPowY >= ThresPowY) { /* Note: sign_bias == 0 here because y is not odd. */ if (ix == asuint64 (1.0)) return 1.0; /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ if ((topy & 0x7ff) < SmallPowY) return 1.0; #if WANT_SIMD_EXCEPT return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0) : __math_uflow (0); #else return (ix > asuint64 (1.0)) == (topy < 0x800) ? INFINITY : 0; #endif } if (topx == 0) { /* Normalize subnormal x so exponent becomes negative. */ ix = asuint64 (x * 0x1p52); ix &= 0x7fffffffffffffff; ix -= 52ULL << 52; } } double lo; double hi = log_inline (ix, &lo); double ehi = y * hi; double elo = y * lo + fma (y, hi, -ehi); return exp_inline (ehi, elo, sign_bias); }