/* Double-precision AdvSIMD expm1 Copyright (C) 2023-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" #include "poly_advsimd_f64.h" static const struct data { float64x2_t poly[11]; float64x2_t invln2, ln2, shift; int64x2_t exponent_bias; #if WANT_SIMD_EXCEPT uint64x2_t thresh, tiny_bound; #else float64x2_t oflow_bound; #endif } data = { /* Generated using fpminimax, with degree=12 in [log(2)/2, log(2)/2]. */ .poly = { V2 (0x1p-1), V2 (0x1.5555555555559p-3), V2 (0x1.555555555554bp-5), V2 (0x1.111111110f663p-7), V2 (0x1.6c16c16c1b5f3p-10), V2 (0x1.a01a01affa35dp-13), V2 (0x1.a01a018b4ecbbp-16), V2 (0x1.71ddf82db5bb4p-19), V2 (0x1.27e517fc0d54bp-22), V2 (0x1.af5eedae67435p-26), V2 (0x1.1f143d060a28ap-29) }, .invln2 = V2 (0x1.71547652b82fep0), .ln2 = { 0x1.62e42fefa39efp-1, 0x1.abc9e3b39803fp-56 }, .shift = V2 (0x1.8p52), .exponent_bias = V2 (0x3ff0000000000000), #if WANT_SIMD_EXCEPT /* asuint64(oflow_bound) - asuint64(0x1p-51), shifted left by 1 for abs compare. */ .thresh = V2 (0x78c56fa6d34b552), /* asuint64(0x1p-51) << 1. */ .tiny_bound = V2 (0x3cc0000000000000 << 1), #else /* Value above which expm1(x) should overflow. Absolute value of the underflow bound is greater than this, so it catches both cases - there is a small window where fallbacks are triggered unnecessarily. */ .oflow_bound = V2 (0x1.62b7d369a5aa9p+9), #endif }; static float64x2_t VPCS_ATTR NOINLINE special_case (float64x2_t x, float64x2_t y, uint64x2_t special) { return v_call_f64 (expm1, x, y, special); } /* Double-precision vector exp(x) - 1 function. The maximum error observed error is 2.18 ULP: _ZGVnN2v_expm1 (0x1.634ba0c237d7bp-2) got 0x1.a8b9ea8d66e22p-2 want 0x1.a8b9ea8d66e2p-2. */ float64x2_t VPCS_ATTR V_NAME_D1 (expm1) (float64x2_t x) { const struct data *d = ptr_barrier (&data); uint64x2_t ix = vreinterpretq_u64_f64 (x); #if WANT_SIMD_EXCEPT /* If fp exceptions are to be triggered correctly, fall back to scalar for |x| < 2^-51, |x| > oflow_bound, Inf & NaN. Add ix to itself for shift-left by 1, and compare with thresh which was left-shifted offline - this is effectively an absolute compare. */ uint64x2_t special = vcgeq_u64 (vsubq_u64 (vaddq_u64 (ix, ix), d->tiny_bound), d->thresh); if (__glibc_unlikely (v_any_u64 (special))) x = v_zerofy_f64 (x, special); #else /* Large input, NaNs and Infs. */ uint64x2_t special = vcageq_f64 (x, d->oflow_bound); #endif /* Reduce argument to smaller range: Let i = round(x / ln2) and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 where 2^i is exact because i is an integer. */ float64x2_t n = vsubq_f64 (vfmaq_f64 (d->shift, d->invln2, x), d->shift); int64x2_t i = vcvtq_s64_f64 (n); float64x2_t f = vfmsq_laneq_f64 (x, n, d->ln2, 0); f = vfmsq_laneq_f64 (f, n, d->ln2, 1); /* Approximate expm1(f) using polynomial. Taylor expansion for expm1(x) has the form: x + ax^2 + bx^3 + cx^4 .... So we calculate the polynomial P(f) = a + bf + cf^2 + ... and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ float64x2_t f2 = vmulq_f64 (f, f); float64x2_t f4 = vmulq_f64 (f2, f2); float64x2_t f8 = vmulq_f64 (f4, f4); float64x2_t p = vfmaq_f64 (f, f2, v_estrin_10_f64 (f, f2, f4, f8, d->poly)); /* Assemble the result. expm1(x) ~= 2^i * (p + 1) - 1 Let t = 2^i. */ int64x2_t u = vaddq_s64 (vshlq_n_s64 (i, 52), d->exponent_bias); float64x2_t t = vreinterpretq_f64_s64 (u); if (__glibc_unlikely (v_any_u64 (special))) return special_case (vreinterpretq_f64_u64 (ix), vfmaq_f64 (vsubq_f64 (t, v_f64 (1.0)), p, t), special); /* expm1(x) ~= p * t + (t - 1). */ return vfmaq_f64 (vsubq_f64 (t, v_f64 (1.0)), p, t); }