/* Double-precision vector (AdvSIMD) cosh function Copyright (C) 2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" static const struct data { float64x2_t poly[3]; float64x2_t inv_ln2; double ln2[2]; float64x2_t shift, thres; uint64x2_t index_mask, special_bound; } data = { .poly = { V2 (0x1.fffffffffffd4p-2), V2 (0x1.5555571d6b68cp-3), V2 (0x1.5555576a59599p-5), }, .inv_ln2 = V2 (0x1.71547652b82fep8), /* N/ln2. */ /* -ln2/N. */ .ln2 = {-0x1.62e42fefa39efp-9, -0x1.abc9e3b39803f3p-64}, .shift = V2 (0x1.8p+52), .thres = V2 (704.0), .index_mask = V2 (0xff), /* 0x1.6p9, above which exp overflows. */ .special_bound = V2 (0x4086000000000000), }; static float64x2_t NOINLINE VPCS_ATTR special_case (float64x2_t x, float64x2_t y, uint64x2_t special) { return v_call_f64 (cosh, x, y, special); } /* Helper for approximating exp(x). Copied from v_exp_tail, with no special-case handling or tail. */ static inline float64x2_t exp_inline (float64x2_t x) { const struct data *d = ptr_barrier (&data); /* n = round(x/(ln2/N)). */ float64x2_t z = vfmaq_f64 (d->shift, x, d->inv_ln2); uint64x2_t u = vreinterpretq_u64_f64 (z); float64x2_t n = vsubq_f64 (z, d->shift); /* r = x - n*ln2/N. */ float64x2_t ln2 = vld1q_f64 (d->ln2); float64x2_t r = vfmaq_laneq_f64 (x, n, ln2, 0); r = vfmaq_laneq_f64 (r, n, ln2, 1); uint64x2_t e = vshlq_n_u64 (u, 52 - V_EXP_TAIL_TABLE_BITS); uint64x2_t i = vandq_u64 (u, d->index_mask); /* y = tail + exp(r) - 1 ~= r + C1 r^2 + C2 r^3 + C3 r^4. */ float64x2_t y = vfmaq_f64 (d->poly[1], d->poly[2], r); y = vfmaq_f64 (d->poly[0], y, r); y = vmulq_f64 (vfmaq_f64 (v_f64 (1), y, r), r); /* s = 2^(n/N). */ u = v_lookup_u64 (__v_exp_tail_data, i); float64x2_t s = vreinterpretq_f64_u64 (vaddq_u64 (u, e)); return vfmaq_f64 (s, y, s); } /* Approximation for vector double-precision cosh(x) using exp_inline. cosh(x) = (exp(x) + exp(-x)) / 2. The greatest observed error is in the scalar fall-back region, so is the same as the scalar routine, 1.93 ULP: _ZGVnN2v_cosh (0x1.628af341989dap+9) got 0x1.fdf28623ef921p+1021 want 0x1.fdf28623ef923p+1021. The greatest observed error in the non-special region is 1.54 ULP: _ZGVnN2v_cosh (0x1.8e205b6ecacf7p+2) got 0x1.f711dcb0c77afp+7 want 0x1.f711dcb0c77b1p+7. */ float64x2_t VPCS_ATTR V_NAME_D1 (cosh) (float64x2_t x) { const struct data *d = ptr_barrier (&data); float64x2_t ax = vabsq_f64 (x); uint64x2_t special = vcgtq_u64 (vreinterpretq_u64_f64 (ax), d->special_bound); /* Up to the point that exp overflows, we can use it to calculate cosh by exp(|x|) / 2 + 1 / (2 * exp(|x|)). */ float64x2_t t = exp_inline (ax); float64x2_t half_t = vmulq_n_f64 (t, 0.5); float64x2_t half_over_t = vdivq_f64 (v_f64 (0.5), t); /* Fall back to scalar for any special cases. */ if (__glibc_unlikely (v_any_u64 (special))) return special_case (x, vaddq_f64 (half_t, half_over_t), special); return vaddq_f64 (half_t, half_over_t); }