/* Double-precision vector (SVE) cos function. Copyright (C) 2023 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "sv_math.h" static const struct data { double inv_pio2, pio2_1, pio2_2, pio2_3, shift; } data = { /* Polynomial coefficients are hardwired in FTMAD instructions. */ .inv_pio2 = 0x1.45f306dc9c882p-1, .pio2_1 = 0x1.921fb50000000p+0, .pio2_2 = 0x1.110b460000000p-26, .pio2_3 = 0x1.1a62633145c07p-54, /* Original shift used in AdvSIMD cos, plus a contribution to set the bit #0 of q as expected by trigonometric instructions. */ .shift = 0x1.8000000000001p52 }; #define RangeVal 0x4160000000000000 /* asuint64 (0x1p23). */ static svfloat64_t NOINLINE special_case (svfloat64_t x, svfloat64_t y, svbool_t oob) { return sv_call_f64 (cos, x, y, oob); } /* A fast SVE implementation of cos based on trigonometric instructions (FTMAD, FTSSEL, FTSMUL). Maximum measured error: 2.108 ULPs. SV_NAME_D1 (cos)(0x1.9b0ba158c98f3p+7) got -0x1.fddd4c65c7f07p-3 want -0x1.fddd4c65c7f05p-3. */ svfloat64_t SV_NAME_D1 (cos) (svfloat64_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); svfloat64_t r = svabs_x (pg, x); svbool_t oob = svcmpge (pg, svreinterpret_u64 (r), RangeVal); /* Load some constants in quad-word chunks to minimise memory access. */ svbool_t ptrue = svptrue_b64 (); svfloat64_t invpio2_and_pio2_1 = svld1rq (ptrue, &d->inv_pio2); svfloat64_t pio2_23 = svld1rq (ptrue, &d->pio2_2); /* n = rint(|x|/(pi/2)). */ svfloat64_t q = svmla_lane (sv_f64 (d->shift), r, invpio2_and_pio2_1, 0); svfloat64_t n = svsub_x (pg, q, d->shift); /* r = |x| - n*(pi/2) (range reduction into -pi/4 .. pi/4). */ r = svmls_lane (r, n, invpio2_and_pio2_1, 1); r = svmls_lane (r, n, pio2_23, 0); r = svmls_lane (r, n, pio2_23, 1); /* cos(r) poly approx. */ svfloat64_t r2 = svtsmul (r, svreinterpret_u64 (q)); svfloat64_t y = sv_f64 (0.0); y = svtmad (y, r2, 7); y = svtmad (y, r2, 6); y = svtmad (y, r2, 5); y = svtmad (y, r2, 4); y = svtmad (y, r2, 3); y = svtmad (y, r2, 2); y = svtmad (y, r2, 1); y = svtmad (y, r2, 0); /* Final multiplicative factor: 1.0 or x depending on bit #0 of q. */ svfloat64_t f = svtssel (r, svreinterpret_u64 (q)); if (__glibc_unlikely (svptest_any (pg, oob))) return special_case (x, svmul_x (svnot_z (pg, oob), y, f), oob); /* Apply factor. */ return svmul_x (pg, f, y); }