/* Double-precision AdvSIMD inverse sin Copyright (C) 2023 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" #include "poly_advsimd_f64.h" static const struct data { float64x2_t poly[12]; float64x2_t pi_over_2; uint64x2_t abs_mask; } data = { /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */ .poly = { V2 (0x1.555555555554ep-3), V2 (0x1.3333333337233p-4), V2 (0x1.6db6db67f6d9fp-5), V2 (0x1.f1c71fbd29fbbp-6), V2 (0x1.6e8b264d467d6p-6), V2 (0x1.1c5997c357e9dp-6), V2 (0x1.c86a22cd9389dp-7), V2 (0x1.856073c22ebbep-7), V2 (0x1.fd1151acb6bedp-8), V2 (0x1.087182f799c1dp-6), V2 (-0x1.6602748120927p-7), V2 (0x1.cfa0dd1f9478p-6), }, .pi_over_2 = V2 (0x1.921fb54442d18p+0), .abs_mask = V2 (0x7fffffffffffffff), }; #define AllMask v_u64 (0xffffffffffffffff) #define One (0x3ff0000000000000) #define Small (0x3e50000000000000) /* 2^-12. */ #if WANT_SIMD_EXCEPT static float64x2_t VPCS_ATTR NOINLINE special_case (float64x2_t x, float64x2_t y, uint64x2_t special) { return v_call_f64 (asin, x, y, special); } #endif /* Double-precision implementation of vector asin(x). For |x| < Small, approximate asin(x) by x. Small = 2^-12 for correct rounding. If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following approximation. For |x| in [Small, 0.5], use an order 11 polynomial P such that the final approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2). The largest observed error in this region is 1.01 ulps, _ZGVnN2v_asin (0x1.da9735b5a9277p-2) got 0x1.ed78525a927efp-2 want 0x1.ed78525a927eep-2. For |x| in [0.5, 1.0], use same approximation with a change of variable asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z). The largest observed error in this region is 2.69 ulps, _ZGVnN2v_asin (0x1.044ac9819f573p-1) got 0x1.110d7e85fdd5p-1 want 0x1.110d7e85fdd53p-1. */ float64x2_t VPCS_ATTR V_NAME_D1 (asin) (float64x2_t x) { const struct data *d = ptr_barrier (&data); float64x2_t ax = vabsq_f64 (x); #if WANT_SIMD_EXCEPT /* Special values need to be computed with scalar fallbacks so that appropriate exceptions are raised. */ uint64x2_t special = vcgtq_u64 (vsubq_u64 (vreinterpretq_u64_f64 (ax), v_u64 (Small)), v_u64 (One - Small)); if (__glibc_unlikely (v_any_u64 (special))) return special_case (x, x, AllMask); #endif uint64x2_t a_lt_half = vcltq_f64 (ax, v_f64 (0.5)); /* Evaluate polynomial Q(x) = y + y * z * P(z) with z = x ^ 2 and y = |x| , if |x| < 0.5 z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */ float64x2_t z2 = vbslq_f64 (a_lt_half, vmulq_f64 (x, x), vfmsq_n_f64 (v_f64 (0.5), ax, 0.5)); float64x2_t z = vbslq_f64 (a_lt_half, ax, vsqrtq_f64 (z2)); /* Use a single polynomial approximation P for both intervals. */ float64x2_t z4 = vmulq_f64 (z2, z2); float64x2_t z8 = vmulq_f64 (z4, z4); float64x2_t z16 = vmulq_f64 (z8, z8); float64x2_t p = v_estrin_11_f64 (z2, z4, z8, z16, d->poly); /* Finalize polynomial: z + z * z2 * P(z2). */ p = vfmaq_f64 (z, vmulq_f64 (z, z2), p); /* asin(|x|) = Q(|x|) , for |x| < 0.5 = pi/2 - 2 Q(|x|), for |x| >= 0.5. */ float64x2_t y = vbslq_f64 (a_lt_half, p, vfmsq_n_f64 (d->pi_over_2, p, 2.0)); /* Copy sign. */ return vbslq_f64 (d->abs_mask, y, x); }