/* Copyright (C) 1991-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
/* If you consider tuning this algorithm, you should consult first:
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
#include
#include
#include
#include
#include
#include
/* Swap SIZE bytes between addresses A and B. These helpers are provided
along the generic one as an optimization. */
enum swap_type_t
{
SWAP_WORDS_64,
SWAP_WORDS_32,
SWAP_VOID_ARG,
SWAP_BYTES
};
typedef uint32_t __attribute__ ((__may_alias__)) u32_alias_t;
typedef uint64_t __attribute__ ((__may_alias__)) u64_alias_t;
static inline void
swap_words_64 (void * restrict a, void * restrict b, size_t n)
{
do
{
n -= 8;
u64_alias_t t = *(u64_alias_t *)(a + n);
*(u64_alias_t *)(a + n) = *(u64_alias_t *)(b + n);
*(u64_alias_t *)(b + n) = t;
} while (n);
}
static inline void
swap_words_32 (void * restrict a, void * restrict b, size_t n)
{
do
{
n -= 4;
u32_alias_t t = *(u32_alias_t *)(a + n);
*(u32_alias_t *)(a + n) = *(u32_alias_t *)(b + n);
*(u32_alias_t *)(b + n) = t;
} while (n);
}
/* Replace the indirect call with a serie of if statements. It should help
the branch predictor. */
static void
do_swap (void * restrict a, void * restrict b, size_t size,
enum swap_type_t swap_type)
{
if (swap_type == SWAP_WORDS_64)
swap_words_64 (a, b, size);
else if (swap_type == SWAP_WORDS_32)
swap_words_32 (a, b, size);
else
__memswap (a, b, size);
}
/* Establish the heap condition at index K, that is, the key at K will
not be less than either of its children, at 2 * K + 1 and 2 * K + 2
(if they exist). N is the last valid index. */
static inline void
siftdown (void *base, size_t size, size_t k, size_t n,
enum swap_type_t swap_type, __compar_d_fn_t cmp, void *arg)
{
/* There can only be a heap condition violation if there are
children. */
while (2 * k + 1 <= n)
{
/* Left child. */
size_t j = 2 * k + 1;
/* If the right child is larger, use it. */
if (j < n && cmp (base + (j * size), base + ((j + 1) * size), arg) < 0)
j++;
/* If k is already >= to its children, we are done. */
if (j == k || cmp (base + (k * size), base + (j * size), arg) >= 0)
break;
/* Heal the violation. */
do_swap (base + (size * j), base + (k * size), size, swap_type);
/* Swapping with j may have introduced a violation at j. Fix
it in the next loop iteration. */
k = j;
}
}
/* Establish the heap condition for the indices 0 to N (inclusive). */
static inline void
heapify (void *base, size_t size, size_t n, enum swap_type_t swap_type,
__compar_d_fn_t cmp, void *arg)
{
/* If n is odd, k = n / 2 has a left child at n, so this is the
largest index that can have a heap condition violation regarding
its children. */
size_t k = n / 2;
while (1)
{
siftdown (base, size, k, n, swap_type, cmp, arg);
if (k-- == 0)
break;
}
}
static enum swap_type_t
get_swap_type (void *const pbase, size_t size)
{
if ((size & (sizeof (uint32_t) - 1)) == 0
&& ((uintptr_t) pbase) % __alignof__ (uint32_t) == 0)
{
if (size == sizeof (uint32_t))
return SWAP_WORDS_32;
else if (size == sizeof (uint64_t)
&& ((uintptr_t) pbase) % __alignof__ (uint64_t) == 0)
return SWAP_WORDS_64;
}
return SWAP_BYTES;
}
/* A non-recursive heapsort with worst-case performance of O(nlog n) and
worst-case space complexity of O(1). It sorts the array starting at
BASE with n + 1 elements of SIZE bytes. The SWAP_TYPE is the callback
function used to swap elements, and CMP is the function used to compare
elements. */
static void
heapsort_r (void *base, size_t n, size_t size, __compar_d_fn_t cmp, void *arg)
{
if (n == 0)
return;
enum swap_type_t swap_type = get_swap_type (base, size);
/* Build the binary heap, largest value at the base[0]. */
heapify (base, size, n, swap_type, cmp, arg);
while (true)
{
/* Indices 0 .. n contain the binary heap. Extract the largest
element put it into the final position in the array. */
do_swap (base, base + (n * size), size, swap_type);
/* The heap is now one element shorter. */
n--;
if (n == 0)
break;
/* By swapping in elements 0 and the previous value of n (now at
n + 1), we likely introduced a heap condition violation. Fix
it for the reduced heap. */
siftdown (base, size, 0, n, swap_type, cmp, arg);
}
}
/* The maximum size in bytes required by mergesort that will be provided
through a buffer allocated in the stack. */
#define QSORT_STACK_SIZE 1024
/* Elements larger than this value will be sorted through indirect sorting
to minimize the need to memory swap calls. */
#define INDIRECT_SORT_SIZE_THRES 32
struct msort_param
{
size_t s;
enum swap_type_t var;
__compar_d_fn_t cmp;
void *arg;
char *t;
};
static void
msort_with_tmp (const struct msort_param *p, void *b, size_t n)
{
char *b1, *b2;
size_t n1, n2;
if (n <= 1)
return;
n1 = n / 2;
n2 = n - n1;
b1 = b;
b2 = (char *) b + (n1 * p->s);
msort_with_tmp (p, b1, n1);
msort_with_tmp (p, b2, n2);
char *tmp = p->t;
const size_t s = p->s;
__compar_d_fn_t cmp = p->cmp;
void *arg = p->arg;
switch (p->var)
{
case SWAP_WORDS_32:
while (n1 > 0 && n2 > 0)
{
if (cmp (b1, b2, arg) <= 0)
{
*(u32_alias_t *) tmp = *(u32_alias_t *) b1;
b1 += sizeof (u32_alias_t);
--n1;
}
else
{
*(u32_alias_t *) tmp = *(u32_alias_t *) b2;
b2 += sizeof (u32_alias_t);
--n2;
}
tmp += sizeof (u32_alias_t);
}
break;
case SWAP_WORDS_64:
while (n1 > 0 && n2 > 0)
{
if (cmp (b1, b2, arg) <= 0)
{
*(u64_alias_t *) tmp = *(u64_alias_t *) b1;
b1 += sizeof (u64_alias_t);
--n1;
}
else
{
*(u64_alias_t *) tmp = *(u64_alias_t *) b2;
b2 += sizeof (u64_alias_t);
--n2;
}
tmp += sizeof (u64_alias_t);
}
break;
case SWAP_VOID_ARG:
while (n1 > 0 && n2 > 0)
{
if ((*cmp) (*(const void **) b1, *(const void **) b2, arg) <= 0)
{
*(void **) tmp = *(void **) b1;
b1 += sizeof (void *);
--n1;
}
else
{
*(void **) tmp = *(void **) b2;
b2 += sizeof (void *);
--n2;
}
tmp += sizeof (void *);
}
break;
default:
while (n1 > 0 && n2 > 0)
{
if (cmp (b1, b2, arg) <= 0)
{
tmp = (char *) __mempcpy (tmp, b1, s);
b1 += s;
--n1;
}
else
{
tmp = (char *) __mempcpy (tmp, b2, s);
b2 += s;
--n2;
}
}
break;
}
if (n1 > 0)
memcpy (tmp, b1, n1 * s);
memcpy (b, p->t, (n - n2) * s);
}
static void
__attribute_used__
indirect_msort_with_tmp (const struct msort_param *p, void *b, size_t n,
size_t s)
{
/* Indirect sorting. */
char *ip = (char *) b;
void **tp = (void **) (p->t + n * sizeof (void *));
void **t = tp;
void *tmp_storage = (void *) (tp + n);
while ((void *) t < tmp_storage)
{
*t++ = ip;
ip += s;
}
msort_with_tmp (p, p->t + n * sizeof (void *), n);
/* tp[0] .. tp[n - 1] is now sorted, copy around entries of
the original array. Knuth vol. 3 (2nd ed.) exercise 5.2-10. */
char *kp;
size_t i;
for (i = 0, ip = (char *) b; i < n; i++, ip += s)
if ((kp = tp[i]) != ip)
{
size_t j = i;
char *jp = ip;
memcpy (tmp_storage, ip, s);
do
{
size_t k = (kp - (char *) b) / s;
tp[j] = jp;
memcpy (jp, kp, s);
j = k;
jp = kp;
kp = tp[k];
}
while (kp != ip);
tp[j] = jp;
memcpy (jp, tmp_storage, s);
}
}
void
__qsort_r (void *const pbase, size_t total_elems, size_t size,
__compar_d_fn_t cmp, void *arg)
{
if (total_elems <= 1)
return;
/* Align to the maximum size used by the swap optimization. */
_Alignas (uint64_t) char tmp[QSORT_STACK_SIZE];
size_t total_size = total_elems * size;
char *buf;
if (size > INDIRECT_SORT_SIZE_THRES)
total_size = 2 * total_elems * sizeof (void *) + size;
if (total_size <= sizeof tmp)
buf = tmp;
else
{
int save = errno;
buf = malloc (total_size);
__set_errno (save);
if (buf == NULL)
{
/* Fallback to heapsort in case of memory failure. */
heapsort_r (pbase, total_elems - 1, size, cmp, arg);
return;
}
}
if (size > INDIRECT_SORT_SIZE_THRES)
{
const struct msort_param msort_param =
{
.s = sizeof (void *),
.cmp = cmp,
.arg = arg,
.var = SWAP_VOID_ARG,
.t = buf,
};
indirect_msort_with_tmp (&msort_param, pbase, total_elems, size);
}
else
{
const struct msort_param msort_param =
{
.s = size,
.cmp = cmp,
.arg = arg,
.var = get_swap_type (pbase, size),
.t = buf,
};
msort_with_tmp (&msort_param, pbase, total_elems);
}
if (buf != tmp)
free (buf);
}
libc_hidden_def (__qsort_r)
weak_alias (__qsort_r, qsort_r)
void
qsort (void *b, size_t n, size_t s, __compar_fn_t cmp)
{
return __qsort_r (b, n, s, (__compar_d_fn_t) cmp, NULL);
}
libc_hidden_def (qsort)