/* Copyright (C) 1998-2007, 2008, 2009 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1998. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nscd-client.h" /* Extra time we wait if the socket is still receiving data. This value is in milliseconds. Note that the other side is nscd on the local machine and it is already transmitting data. So the wait time need not be long. */ #define EXTRA_RECEIVE_TIME 200 static int wait_on_socket (int sock, long int usectmo) { struct pollfd fds[1]; fds[0].fd = sock; fds[0].events = POLLIN | POLLERR | POLLHUP; int n = __poll (fds, 1, usectmo); if (n == -1 && __builtin_expect (errno == EINTR, 0)) { /* Handle the case where the poll() call is interrupted by a signal. We cannot just use TEMP_FAILURE_RETRY since it might lead to infinite loops. */ struct timeval now; (void) __gettimeofday (&now, NULL); long int end = now.tv_sec * 1000 + usectmo + (now.tv_usec + 500) / 1000; long int timeout = usectmo; while (1) { n = __poll (fds, 1, timeout); if (n != -1 || errno != EINTR) break; /* Recompute the timeout time. */ (void) __gettimeofday (&now, NULL); timeout = end - (now.tv_sec * 1000 + (now.tv_usec + 500) / 1000); } } return n; } ssize_t __readall (int fd, void *buf, size_t len) { size_t n = len; ssize_t ret; do { again: ret = TEMP_FAILURE_RETRY (__read (fd, buf, n)); if (ret <= 0) { if (__builtin_expect (ret < 0 && errno == EAGAIN, 0) /* The socket is still receiving data. Wait a bit more. */ && wait_on_socket (fd, EXTRA_RECEIVE_TIME) > 0) goto again; break; } buf = (char *) buf + ret; n -= ret; } while (n > 0); return ret < 0 ? ret : len - n; } ssize_t __readvall (int fd, const struct iovec *iov, int iovcnt) { ssize_t ret = TEMP_FAILURE_RETRY (__readv (fd, iov, iovcnt)); if (ret <= 0) { if (__builtin_expect (ret == 0 || errno != EAGAIN, 1)) /* A genuine error or no data to read. */ return ret; /* The data has not all yet been received. Do as if we have not read anything yet. */ ret = 0; } size_t total = 0; for (int i = 0; i < iovcnt; ++i) total += iov[i].iov_len; if (ret < total) { struct iovec iov_buf[iovcnt]; ssize_t r = ret; struct iovec *iovp = memcpy (iov_buf, iov, iovcnt * sizeof (*iov)); do { while (iovp->iov_len <= r) { r -= iovp->iov_len; --iovcnt; ++iovp; } iovp->iov_base = (char *) iovp->iov_base + r; iovp->iov_len -= r; again: r = TEMP_FAILURE_RETRY (__readv (fd, iovp, iovcnt)); if (r <= 0) { if (__builtin_expect (r < 0 && errno == EAGAIN, 0) /* The socket is still receiving data. Wait a bit more. */ && wait_on_socket (fd, EXTRA_RECEIVE_TIME) > 0) goto again; break; } ret += r; } while (ret < total); if (r < 0) ret = r; } return ret; } static int open_socket (request_type type, const char *key, size_t keylen) { int sock; #ifdef SOCK_CLOEXEC # ifndef __ASSUME_SOCK_CLOEXEC if (__have_sock_cloexec >= 0) # endif { sock = __socket (PF_UNIX, SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK, 0); # ifndef __ASSUME_SOCK_CLOEXEC if (__have_sock_cloexec == 0) __have_sock_cloexec = sock != -1 || errno != EINVAL ? 1 : -1; # endif } #endif #ifndef __ASSUME_SOCK_CLOEXEC # ifdef SOCK_CLOEXEC if (__have_sock_cloexec < 0) # endif sock = __socket (PF_UNIX, SOCK_STREAM, 0); #endif if (sock < 0) return -1; struct { request_header req; char key[keylen]; } reqdata; size_t real_sizeof_reqdata = sizeof (request_header) + keylen; #ifndef __ASSUME_SOCK_CLOEXEC # ifdef SOCK_NONBLOCK if (__have_sock_cloexec < 0) # endif /* Make socket non-blocking. */ __fcntl (sock, F_SETFL, O_RDWR | O_NONBLOCK); #endif struct sockaddr_un sun; sun.sun_family = AF_UNIX; strcpy (sun.sun_path, _PATH_NSCDSOCKET); if (__connect (sock, (struct sockaddr *) &sun, sizeof (sun)) < 0 && errno != EINPROGRESS) goto out; reqdata.req.version = NSCD_VERSION; reqdata.req.type = type; reqdata.req.key_len = keylen; memcpy (reqdata.key, key, keylen); bool first_try = true; struct timeval tvend; /* Fake initializing tvend. */ asm ("" : "=m" (tvend)); while (1) { #ifndef MSG_NOSIGNAL # define MSG_NOSIGNAL 0 #endif ssize_t wres = TEMP_FAILURE_RETRY (__send (sock, &reqdata, real_sizeof_reqdata, MSG_NOSIGNAL)); if (__builtin_expect (wres == (ssize_t) real_sizeof_reqdata, 1)) /* We managed to send the request. */ return sock; if (wres != -1 || errno != EAGAIN) /* Something is really wrong, no chance to continue. */ break; /* The daemon is busy wait for it. */ int to; struct timeval now; (void) __gettimeofday (&now, NULL); if (first_try) { tvend.tv_usec = now.tv_usec; tvend.tv_sec = now.tv_sec + 5; to = 5 * 1000; first_try = false; } else to = ((tvend.tv_sec - now.tv_sec) * 1000 + (tvend.tv_usec - now.tv_usec) / 1000); struct pollfd fds[1]; fds[0].fd = sock; fds[0].events = POLLOUT | POLLERR | POLLHUP; if (__poll (fds, 1, to) <= 0) /* The connection timed out or broke down. */ break; /* We try to write again. */ } out: close_not_cancel_no_status (sock); return -1; } void __nscd_unmap (struct mapped_database *mapped) { assert (mapped->counter == 0); __munmap ((void *) mapped->head, mapped->mapsize); free (mapped); } /* Try to get a file descriptor for the shared meory segment containing the database. */ static struct mapped_database * get_mapping (request_type type, const char *key, struct mapped_database **mappedp) { struct mapped_database *result = NO_MAPPING; #ifdef SCM_RIGHTS const size_t keylen = strlen (key) + 1; int saved_errno = errno; int mapfd = -1; char resdata[keylen]; /* Open a socket and send the request. */ int sock = open_socket (type, key, keylen); if (sock < 0) goto out; /* Room for the data sent along with the file descriptor. We expect the key name back. */ uint64_t mapsize; struct iovec iov[2]; iov[0].iov_base = resdata; iov[0].iov_len = keylen; iov[1].iov_base = &mapsize; iov[1].iov_len = sizeof (mapsize); union { struct cmsghdr hdr; char bytes[CMSG_SPACE (sizeof (int))]; } buf; struct msghdr msg = { .msg_iov = iov, .msg_iovlen = 2, .msg_control = buf.bytes, .msg_controllen = sizeof (buf) }; struct cmsghdr *cmsg = CMSG_FIRSTHDR (&msg); cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = SCM_RIGHTS; cmsg->cmsg_len = CMSG_LEN (sizeof (int)); /* This access is well-aligned since BUF is correctly aligned for an int and CMSG_DATA preserves this alignment. */ memset (CMSG_DATA (cmsg), '\xff', sizeof (int)); msg.msg_controllen = cmsg->cmsg_len; if (wait_on_socket (sock, 5 * 1000) <= 0) goto out_close2; # ifndef MSG_CMSG_CLOEXEC # define MSG_CMSG_CLOEXEC 0 # endif ssize_t n = TEMP_FAILURE_RETRY (__recvmsg (sock, &msg, MSG_CMSG_CLOEXEC)); if (__builtin_expect (CMSG_FIRSTHDR (&msg) == NULL || (CMSG_FIRSTHDR (&msg)->cmsg_len != CMSG_LEN (sizeof (int))), 0)) goto out_close2; int *ip = (void *) CMSG_DATA (cmsg); mapfd = *ip; if (__builtin_expect (n != keylen && n != keylen + sizeof (mapsize), 0)) goto out_close; if (__builtin_expect (strcmp (resdata, key) != 0, 0)) goto out_close; if (__builtin_expect (n == keylen, 0)) { struct stat64 st; if (__builtin_expect (fstat64 (mapfd, &st) != 0, 0) || __builtin_expect (st.st_size < sizeof (struct database_pers_head), 0)) goto out_close; mapsize = st.st_size; } /* The file is large enough, map it now. */ void *mapping = __mmap (NULL, mapsize, PROT_READ, MAP_SHARED, mapfd, 0); if (__builtin_expect (mapping != MAP_FAILED, 1)) { /* Check whether the database is correct and up-to-date. */ struct database_pers_head *head = mapping; if (__builtin_expect (head->version != DB_VERSION, 0) || __builtin_expect (head->header_size != sizeof (*head), 0) /* Catch some misconfiguration. The server should catch them now but some older versions did not. */ || __builtin_expect (head->module == 0, 0) /* This really should not happen but who knows, maybe the update thread got stuck. */ || __builtin_expect (! head->nscd_certainly_running && (head->timestamp + MAPPING_TIMEOUT < time (NULL)), 0)) { out_unmap: __munmap (mapping, mapsize); goto out_close; } size_t size = (sizeof (*head) + roundup (head->module * sizeof (ref_t), ALIGN) + head->data_size); if (__builtin_expect (mapsize < size, 0)) goto out_unmap; /* Allocate a record for the mapping. */ struct mapped_database *newp = malloc (sizeof (*newp)); if (newp == NULL) /* Ugh, after all we went through the memory allocation failed. */ goto out_unmap; newp->head = mapping; newp->data = ((char *) mapping + head->header_size + roundup (head->module * sizeof (ref_t), ALIGN)); newp->mapsize = size; newp->datasize = head->data_size; /* Set counter to 1 to show it is usable. */ newp->counter = 1; result = newp; } out_close: __close (mapfd); out_close2: __close (sock); out: __set_errno (saved_errno); #endif /* SCM_RIGHTS */ struct mapped_database *oldval = *mappedp; *mappedp = result; if (oldval != NULL && atomic_decrement_val (&oldval->counter) == 0) __nscd_unmap (oldval); return result; } struct mapped_database * __nscd_get_map_ref (request_type type, const char *name, volatile struct locked_map_ptr *mapptr, int *gc_cyclep) { struct mapped_database *cur = mapptr->mapped; if (cur == NO_MAPPING) return cur; int cnt = 0; while (__builtin_expect (atomic_compare_and_exchange_val_acq (&mapptr->lock, 1, 0) != 0, 0)) { // XXX Best number of rounds? if (__builtin_expect (++cnt > 5, 0)) return NO_MAPPING; atomic_delay (); } cur = mapptr->mapped; if (__builtin_expect (cur != NO_MAPPING, 1)) { /* If not mapped or timestamp not updated, request new map. */ if (cur == NULL || (cur->head->nscd_certainly_running == 0 && cur->head->timestamp + MAPPING_TIMEOUT < time (NULL)) || cur->head->data_size > cur->datasize) cur = get_mapping (type, name, (struct mapped_database **) &mapptr->mapped); if (__builtin_expect (cur != NO_MAPPING, 1)) { if (__builtin_expect (((*gc_cyclep = cur->head->gc_cycle) & 1) != 0, 0)) cur = NO_MAPPING; else atomic_increment (&cur->counter); } } mapptr->lock = 0; return cur; } /* Don't return const struct datahead *, as eventhough the record is normally constant, it can change arbitrarily during nscd garbage collection. */ struct datahead * __nscd_cache_search (request_type type, const char *key, size_t keylen, const struct mapped_database *mapped, size_t datalen) { unsigned long int hash = __nis_hash (key, keylen) % mapped->head->module; size_t datasize = mapped->datasize; ref_t trail = mapped->head->array[hash]; trail = atomic_forced_read (trail); ref_t work = trail; size_t loop_cnt = datasize / (offsetof (struct datahead, data) + datalen); int tick = 0; while (work != ENDREF && work + sizeof (struct hashentry) <= datasize) { struct hashentry *here = (struct hashentry *) (mapped->data + work); ref_t here_key, here_packet; #ifndef _STRING_ARCH_unaligned /* Although during garbage collection when moving struct hashentry records around we first copy from old to new location and then adjust pointer from previous hashentry to it, there is no barrier between those memory writes. It is very unlikely to hit it, so check alignment only if a misaligned load can crash the application. */ if ((uintptr_t) here & (__alignof__ (*here) - 1)) return NULL; #endif if (type == here->type && keylen == here->len && (here_key = atomic_forced_read (here->key)) + keylen <= datasize && memcmp (key, mapped->data + here_key, keylen) == 0 && ((here_packet = atomic_forced_read (here->packet)) + sizeof (struct datahead) <= datasize)) { /* We found the entry. Increment the appropriate counter. */ struct datahead *dh = (struct datahead *) (mapped->data + here_packet); #ifndef _STRING_ARCH_unaligned if ((uintptr_t) dh & (__alignof__ (*dh) - 1)) return NULL; #endif /* See whether we must ignore the entry or whether something is wrong because garbage collection is in progress. */ if (dh->usable && here_packet + dh->allocsize <= datasize && (here_packet + offsetof (struct datahead, data) + datalen <= datasize)) return dh; } work = atomic_forced_read (here->next); /* Prevent endless loops. This should never happen but perhaps the database got corrupted, accidentally or deliberately. */ if (work == trail || loop_cnt-- == 0) break; if (tick) { struct hashentry *trailelem; trailelem = (struct hashentry *) (mapped->data + trail); #ifndef _STRING_ARCH_unaligned /* We have to redo the checks. Maybe the data changed. */ if ((uintptr_t) trailelem & (__alignof__ (*trailelem) - 1)) return NULL; #endif if (trail + sizeof (struct hashentry) > datasize) return NULL; trail = atomic_forced_read (trailelem->next); } tick = 1 - tick; } return NULL; } /* Create a socket connected to a name. */ int __nscd_open_socket (const char *key, size_t keylen, request_type type, void *response, size_t responselen) { /* This should never happen and it is something the nscd daemon enforces, too. He it helps to limit the amount of stack used. */ if (keylen > MAXKEYLEN) return -1; int saved_errno = errno; int sock = open_socket (type, key, keylen); if (sock >= 0) { /* Wait for data. */ if (wait_on_socket (sock, 5 * 1000) > 0) { ssize_t nbytes = TEMP_FAILURE_RETRY (__read (sock, response, responselen)); if (nbytes == (ssize_t) responselen) return sock; } close_not_cancel_no_status (sock); } __set_errno (saved_errno); return -1; }