/* Test compilation of tgmath macros. Copyright (C) 2001-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Jakub Jelinek and Ulrich Drepper , 2001. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #ifndef HAVE_MAIN #undef __NO_MATH_INLINES #define __NO_MATH_INLINES 1 #include #include #include //#define DEBUG static void compile_test (void); static void compile_testf (void); #ifndef NO_LONG_DOUBLE static void compile_testl (void); #endif float fx; double dx; long double lx; const float fy = 1.25; const double dy = 1.25; const long double ly = 1.25; complex float fz; complex double dz; complex long double lz; int count_double; int count_float; int count_ldouble; int count_cdouble; int count_cfloat; int count_cldouble; #define NCALLS 132 #define NCALLS_INT 4 #define NCCALLS 47 static int do_test (void) { int result = 0; count_float = count_double = count_ldouble = 0; count_cfloat = count_cdouble = count_cldouble = 0; compile_test (); if (count_float != 0 || count_cfloat != 0) { puts ("float function called for double test"); result = 1; } if (count_ldouble != 0 || count_cldouble != 0) { puts ("long double function called for double test"); result = 1; } if (count_double < NCALLS + NCALLS_INT) { printf ("double functions not called often enough (%d)\n", count_double); result = 1; } else if (count_double > NCALLS + NCALLS_INT) { printf ("double functions called too often (%d)\n", count_double); result = 1; } if (count_cdouble < NCCALLS) { printf ("double complex functions not called often enough (%d)\n", count_cdouble); result = 1; } else if (count_cdouble > NCCALLS) { printf ("double complex functions called too often (%d)\n", count_cdouble); result = 1; } count_float = count_double = count_ldouble = 0; count_cfloat = count_cdouble = count_cldouble = 0; compile_testf (); if (count_double != 0 || count_cdouble != 0) { puts ("double function called for float test"); result = 1; } if (count_ldouble != 0 || count_cldouble != 0) { puts ("long double function called for float test"); result = 1; } if (count_float < NCALLS) { printf ("float functions not called often enough (%d)\n", count_float); result = 1; } else if (count_float > NCALLS) { printf ("float functions called too often (%d)\n", count_double); result = 1; } if (count_cfloat < NCCALLS) { printf ("float complex functions not called often enough (%d)\n", count_cfloat); result = 1; } else if (count_cfloat > NCCALLS) { printf ("float complex functions called too often (%d)\n", count_cfloat); result = 1; } #ifndef NO_LONG_DOUBLE count_float = count_double = count_ldouble = 0; count_cfloat = count_cdouble = count_cldouble = 0; compile_testl (); if (count_float != 0 || count_cfloat != 0) { puts ("float function called for long double test"); result = 1; } if (count_double != 0 || count_cdouble != 0) { puts ("double function called for long double test"); result = 1; } if (count_ldouble < NCALLS) { printf ("long double functions not called often enough (%d)\n", count_ldouble); result = 1; } else if (count_ldouble > NCALLS) { printf ("long double functions called too often (%d)\n", count_double); result = 1; } if (count_cldouble < NCCALLS) { printf ("long double complex functions not called often enough (%d)\n", count_cldouble); result = 1; } else if (count_cldouble > NCCALLS) { printf ("long double complex functions called too often (%d)\n", count_cldouble); result = 1; } #endif return result; } /* Now generate the three functions. */ #define HAVE_MAIN #define F(name) name #define TYPE double #define TEST_INT 1 #define x dx #define y dy #define z dz #define count count_double #define ccount count_cdouble #include "test-tgmath.c" #define F(name) name##f #define TYPE float #define x fx #define y fy #define z fz #define count count_float #define ccount count_cfloat #include "test-tgmath.c" #ifndef NO_LONG_DOUBLE #define F(name) name##l #define TYPE long double #define x lx #define y ly #define z lz #define count count_ldouble #define ccount count_cldouble #include "test-tgmath.c" #endif #define TEST_FUNCTION do_test () #include "../test-skeleton.c" #else #ifdef DEBUG #define P() puts (__FUNCTION__) #else #define P() #endif static void F(compile_test) (void) { TYPE a, b, c = 1.0; complex TYPE d; int i; int saved_count; long int j; long long int k; a = cos (cos (x)); b = acos (acos (a)); a = sin (sin (x)); b = asin (asin (a)); a = tan (tan (x)); b = atan (atan (a)); c = atan2 (atan2 (a, c), atan2 (b, x)); a = cosh (cosh (x)); b = acosh (acosh (a)); a = sinh (sinh (x)); b = asinh (asinh (a)); a = tanh (tanh (x)); b = atanh (atanh (a)); a = exp (exp (x)); b = log (log (a)); a = log10 (log10 (x)); b = ldexp (ldexp (a, 1), 5); a = frexp (frexp (x, &i), &i); b = expm1 (expm1 (a)); a = log1p (log1p (x)); b = logb (logb (a)); a = exp2 (exp2 (x)); b = log2 (log2 (a)); a = pow (pow (x, a), pow (c, b)); b = sqrt (sqrt (a)); a = hypot (hypot (x, b), hypot (c, a)); b = cbrt (cbrt (a)); a = ceil (ceil (x)); b = fabs (fabs (a)); a = floor (floor (x)); b = fmod (fmod (a, b), fmod (c, x)); a = nearbyint (nearbyint (x)); b = round (round (a)); a = trunc (trunc (x)); b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i); j = lrint (x) + lround (a); k = llrint (b) + llround (c); a = erf (erf (x)); b = erfc (erfc (a)); a = tgamma (tgamma (x)); b = lgamma (lgamma (a)); a = rint (rint (x)); b = nextafter (nextafter (a, b), nextafter (c, x)); a = nextdown (nextdown (a)); b = nexttoward (nexttoward (x, a), c); a = nextup (nextup (a)); b = remainder (remainder (a, b), remainder (c, x)); a = scalb (scalb (x, a), (TYPE) (6)); k = scalbn (a, 7) + scalbln (c, 10l); i = ilogb (x); j = llogb (x); a = fdim (fdim (x, a), fdim (c, b)); b = fmax (fmax (a, x), fmax (c, b)); a = fmin (fmin (x, a), fmin (c, b)); b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b)); a = fminmag (fminmag (x, a), fminmag (c, b)); b = fma (sin (a), sin (x), sin (c)); a = totalorder (totalorder (x, b), totalorder (c, x)); b = totalordermag (totalordermag (x, a), totalordermag (c, x)); #ifdef TEST_INT a = atan2 (i, b); b = remquo (i, a, &i); c = fma (i, b, i); a = pow (i, c); #endif x = a + b + c + i + j + k; saved_count = count; if (ccount != 0) ccount = -10000; d = cos (cos (z)); z = acos (acos (d)); d = sin (sin (z)); z = asin (asin (d)); d = tan (tan (z)); z = atan (atan (d)); d = cosh (cosh (z)); z = acosh (acosh (d)); d = sinh (sinh (z)); z = asinh (asinh (d)); d = tanh (tanh (z)); z = atanh (atanh (d)); d = exp (exp (z)); z = log (log (d)); d = sqrt (sqrt (z)); z = conj (conj (d)); d = fabs (conj (a)); z = pow (pow (a, d), pow (b, z)); d = cproj (cproj (z)); z += fabs (cproj (a)); a = carg (carg (z)); b = creal (creal (d)); c = cimag (cimag (z)); x += a + b + c + i + j + k; z += d; if (saved_count != count) count = -10000; if (0) { a = cos (y); a = acos (y); a = sin (y); a = asin (y); a = tan (y); a = atan (y); a = atan2 (y, y); a = cosh (y); a = acosh (y); a = sinh (y); a = asinh (y); a = tanh (y); a = atanh (y); a = exp (y); a = log (y); a = log10 (y); a = ldexp (y, 5); a = frexp (y, &i); a = expm1 (y); a = log1p (y); a = logb (y); a = exp2 (y); a = log2 (y); a = pow (y, y); a = sqrt (y); a = hypot (y, y); a = cbrt (y); a = ceil (y); a = fabs (y); a = floor (y); a = fmod (y, y); a = nearbyint (y); a = round (y); a = trunc (y); a = remquo (y, y, &i); j = lrint (y) + lround (y); k = llrint (y) + llround (y); a = erf (y); a = erfc (y); a = tgamma (y); a = lgamma (y); a = rint (y); a = nextafter (y, y); a = nexttoward (y, y); a = remainder (y, y); a = scalb (y, (const TYPE) (6)); k = scalbn (y, 7) + scalbln (y, 10l); i = ilogb (y); j = llogb (y); a = fdim (y, y); a = fmax (y, y); a = fmin (y, y); a = fmaxmag (y, y); a = fminmag (y, y); a = fma (y, y, y); a = totalorder (y, y); a = totalordermag (y, y); #ifdef TEST_INT a = atan2 (i, y); a = remquo (i, y, &i); a = fma (i, y, i); a = pow (i, y); #endif d = cos ((const complex TYPE) z); d = acos ((const complex TYPE) z); d = sin ((const complex TYPE) z); d = asin ((const complex TYPE) z); d = tan ((const complex TYPE) z); d = atan ((const complex TYPE) z); d = cosh ((const complex TYPE) z); d = acosh ((const complex TYPE) z); d = sinh ((const complex TYPE) z); d = asinh ((const complex TYPE) z); d = tanh ((const complex TYPE) z); d = atanh ((const complex TYPE) z); d = exp ((const complex TYPE) z); d = log ((const complex TYPE) z); d = sqrt ((const complex TYPE) z); d = pow ((const complex TYPE) z, (const complex TYPE) z); d = fabs ((const complex TYPE) z); d = carg ((const complex TYPE) z); d = creal ((const complex TYPE) z); d = cimag ((const complex TYPE) z); d = conj ((const complex TYPE) z); d = cproj ((const complex TYPE) z); } } #undef x #undef y #undef z TYPE (F(cos)) (TYPE x) { ++count; P (); return x; } TYPE (F(acos)) (TYPE x) { ++count; P (); return x; } TYPE (F(sin)) (TYPE x) { ++count; P (); return x; } TYPE (F(asin)) (TYPE x) { ++count; P (); return x; } TYPE (F(tan)) (TYPE x) { ++count; P (); return x; } TYPE (F(atan)) (TYPE x) { ++count; P (); return x; } TYPE (F(atan2)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(cosh)) (TYPE x) { ++count; P (); return x; } TYPE (F(acosh)) (TYPE x) { ++count; P (); return x; } TYPE (F(sinh)) (TYPE x) { ++count; P (); return x; } TYPE (F(asinh)) (TYPE x) { ++count; P (); return x; } TYPE (F(tanh)) (TYPE x) { ++count; P (); return x; } TYPE (F(atanh)) (TYPE x) { ++count; P (); return x; } TYPE (F(exp)) (TYPE x) { ++count; P (); return x; } TYPE (F(log)) (TYPE x) { ++count; P (); return x; } TYPE (F(log10)) (TYPE x) { ++count; P (); return x; } TYPE (F(ldexp)) (TYPE x, int y) { ++count; P (); return x + y; } TYPE (F(frexp)) (TYPE x, int *y) { ++count; P (); return x + *y; } TYPE (F(expm1)) (TYPE x) { ++count; P (); return x; } TYPE (F(log1p)) (TYPE x) { ++count; P (); return x; } TYPE (F(logb)) (TYPE x) { ++count; P (); return x; } TYPE (F(exp2)) (TYPE x) { ++count; P (); return x; } TYPE (F(log2)) (TYPE x) { ++count; P (); return x; } TYPE (F(pow)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(sqrt)) (TYPE x) { ++count; P (); return x; } TYPE (F(hypot)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(cbrt)) (TYPE x) { ++count; P (); return x; } TYPE (F(ceil)) (TYPE x) { ++count; P (); return x; } TYPE (F(fabs)) (TYPE x) { ++count; P (); return x; } TYPE (F(floor)) (TYPE x) { ++count; P (); return x; } TYPE (F(fmod)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(nearbyint)) (TYPE x) { ++count; P (); return x; } TYPE (F(round)) (TYPE x) { ++count; P (); return x; } TYPE (F(trunc)) (TYPE x) { ++count; P (); return x; } TYPE (F(remquo)) (TYPE x, TYPE y, int *i) { ++count; P (); return x + y + *i; } long int (F(lrint)) (TYPE x) { ++count; P (); return x; } long int (F(lround)) (TYPE x) { ++count; P (); return x; } long long int (F(llrint)) (TYPE x) { ++count; P (); return x; } long long int (F(llround)) (TYPE x) { ++count; P (); return x; } TYPE (F(erf)) (TYPE x) { ++count; P (); return x; } TYPE (F(erfc)) (TYPE x) { ++count; P (); return x; } TYPE (F(tgamma)) (TYPE x) { ++count; P (); return x; } TYPE (F(lgamma)) (TYPE x) { ++count; P (); return x; } TYPE (F(rint)) (TYPE x) { ++count; P (); return x; } TYPE (F(nextafter)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(nextdown)) (TYPE x) { ++count; P (); return x; } TYPE (F(nexttoward)) (TYPE x, long double y) { ++count; P (); return x + y; } TYPE (F(nextup)) (TYPE x) { ++count; P (); return x; } TYPE (F(remainder)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(scalb)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(scalbn)) (TYPE x, int y) { ++count; P (); return x + y; } TYPE (F(scalbln)) (TYPE x, long int y) { ++count; P (); return x + y; } int (F(ilogb)) (TYPE x) { ++count; P (); return x; } long int (F(llogb)) (TYPE x) { ++count; P (); return x; } TYPE (F(fdim)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(fmin)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(fmax)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(fminmag)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(fmaxmag)) (TYPE x, TYPE y) { ++count; P (); return x + y; } TYPE (F(fma)) (TYPE x, TYPE y, TYPE z) { ++count; P (); return x + y + z; } int (F(totalorder)) (TYPE x, TYPE y) { ++count; P (); return x + y; } int (F(totalordermag)) (TYPE x, TYPE y) { ++count; P (); return x + y; } complex TYPE (F(cacos)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(casin)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(catan)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(ccos)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(csin)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(ctan)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(cacosh)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(casinh)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(catanh)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(ccosh)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(csinh)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(ctanh)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(cexp)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(clog)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(csqrt)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(cpow)) (complex TYPE x, complex TYPE y) { ++ccount; P (); return x + y; } TYPE (F(cabs)) (complex TYPE x) { ++ccount; P (); return x; } TYPE (F(carg)) (complex TYPE x) { ++ccount; P (); return x; } TYPE (F(creal)) (complex TYPE x) { ++ccount; P (); return __real__ x; } TYPE (F(cimag)) (complex TYPE x) { ++ccount; P (); return __imag__ x; } complex TYPE (F(conj)) (complex TYPE x) { ++ccount; P (); return x; } complex TYPE (F(cproj)) (complex TYPE x) { ++ccount; P (); return x; } #undef F #undef TYPE #undef count #undef ccount #undef TEST_INT #endif