/* Complex sine function for float. Copyright (C) 1997-2015 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */ #include <complex.h> #include <fenv.h> #include <math.h> #include <math_private.h> #include <float.h> __complex__ float __csinf (__complex__ float x) { __complex__ float retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = fabsf (__real__ x); if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2); float sinix, cosix; if (__glibc_likely (__real__ x > FLT_MIN)) { __sincosf (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1.0f; } if (negate) sinix = -sinix; if (fabsf (__imag__ x) > t) { float exp_t = __ieee754_expf (t); float ix = fabsf (__imag__ x); if (signbit (__imag__ x)) cosix = -cosix; ix -= t; sinix *= exp_t / 2.0f; cosix *= exp_t / 2.0f; if (ix > t) { ix -= t; sinix *= exp_t; cosix *= exp_t; } if (ix > t) { /* Overflow (original imaginary part of x > 3t). */ __real__ retval = FLT_MAX * sinix; __imag__ retval = FLT_MAX * cosix; } else { float exp_val = __ieee754_expf (ix); __real__ retval = exp_val * sinix; __imag__ retval = exp_val * cosix; } } else { __real__ retval = __ieee754_coshf (__imag__ x) * sinix; __imag__ retval = __ieee754_sinhf (__imag__ x) * cosix; } math_check_force_underflow_complex (retval); } else { if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = __nanf (""); __imag__ retval = __imag__ x; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = __nanf (""); __imag__ retval = __nanf (""); feraiseexcept (FE_INVALID); } } } else if (icls == FP_INFINITE) { /* Imaginary part is infinite. */ if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0); __imag__ retval = __imag__ x; } else if (rcls > FP_ZERO) { /* Real part is finite. */ float sinix, cosix; if (__glibc_likely (__real__ x > FLT_MIN)) { __sincosf (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1.0f; } __real__ retval = __copysignf (HUGE_VALF, sinix); __imag__ retval = __copysignf (HUGE_VALF, cosix); if (negate) __real__ retval = -__real__ retval; if (signbit (__imag__ x)) __imag__ retval = -__imag__ retval; } else { /* The addition raises the invalid exception. */ __real__ retval = __nanf (""); __imag__ retval = HUGE_VALF; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { if (rcls == FP_ZERO) __real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0); else __real__ retval = __nanf (""); __imag__ retval = __nanf (""); } return retval; } #ifndef __csinf weak_alias (__csinf, csinf) #endif