/* Return arc hyperbole sine for long double value. Copyright (C) 1997-2013 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include /* To avoid spurious overflows, use this definition to treat IBM long double as approximating an IEEE-style format. */ #if LDBL_MANT_DIG == 106 # undef LDBL_EPSILON # define LDBL_EPSILON 0x1p-106L #endif __complex__ long double __casinhl (__complex__ long double x) { __complex__ long double res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls <= FP_INFINITE || icls <= FP_INFINITE) { if (icls == FP_INFINITE) { __real__ res = __copysignl (HUGE_VALL, __real__ x); if (rcls == FP_NAN) __imag__ res = __nanl (""); else __imag__ res = __copysignl (rcls >= FP_ZERO ? M_PI_2l : M_PI_4l, __imag__ x); } else if (rcls <= FP_INFINITE) { __real__ res = __real__ x; if ((rcls == FP_INFINITE && icls >= FP_ZERO) || (rcls == FP_NAN && icls == FP_ZERO)) __imag__ res = __copysignl (0.0, __imag__ x); else __imag__ res = __nanl (""); } else { __real__ res = __nanl (""); __imag__ res = __nanl (""); } } else if (rcls == FP_ZERO && icls == FP_ZERO) { res = x; } else { long double rx, ix; __complex__ long double y; /* Avoid cancellation by reducing to the first quadrant. */ rx = fabsl (__real__ x); ix = fabsl (__imag__ x); if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant difference to the result; avoid possible overflow from the squaring and addition. */ __real__ y = rx; __imag__ y = ix; res = __clogl (y); __real__ res += M_LN2l; } else { __real__ y = (rx - ix) * (rx + ix) + 1.0; __imag__ y = 2.0 * rx * ix; y = __csqrtl (y); __real__ y += rx; __imag__ y += ix; res = __clogl (y); } /* Give results the correct sign for the original argument. */ __real__ res = __copysignl (__real__ res, __real__ x); __imag__ res = __copysignl (__imag__ res, __imag__ x); } return res; } weak_alias (__casinhl, casinhl)