/* Declarations for math functions.
Copyright (C) 1991-2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
/*
* ISO C99 Standard: 7.12 Mathematics
*/
#ifndef _MATH_H
#define _MATH_H 1
#define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
#include
__BEGIN_DECLS
/* Get definitions of __intmax_t and __uintmax_t. */
#include
/* Get machine-dependent vector math functions declarations. */
#include
/* Gather machine dependent type support. */
#include
/* Get machine-dependent HUGE_VAL value (returned on overflow).
On all IEEE754 machines, this is +Infinity. */
#include
#if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# include
#endif
#ifdef __USE_ISOC99
# include
# include
/* Get machine-dependent INFINITY value. */
# include
/* Get machine-dependent NAN value (returned for some domain errors). */
# include
#endif /* __USE_ISOC99 */
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Signaling NaN macros, if supported. */
# if __GNUC_PREREQ (3, 3)
# define SNANF (__builtin_nansf (""))
# define SNAN (__builtin_nans (""))
# define SNANL (__builtin_nansl (""))
# endif
#endif
#if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF128 (__builtin_nansf128 (""))
#endif
/* Get __GLIBC_FLT_EVAL_METHOD. */
#include
#ifdef __USE_ISOC99
/* Define the following typedefs.
float_t floating-point type at least as wide as `float' used
to evaluate `float' expressions
double_t floating-point type at least as wide as `double' used
to evaluate `double' expressions
*/
# if __GLIBC_FLT_EVAL_METHOD == 0 || __GLIBC_FLT_EVAL_METHOD == 16
typedef float float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 1
typedef double float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 2
typedef long double float_t;
typedef long double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 32
typedef _Float32 float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 33
typedef _Float32x float_t;
typedef _Float32x double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 64
typedef _Float64 float_t;
typedef _Float64 double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 65
typedef _Float64x float_t;
typedef _Float64x double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 128
typedef _Float128 float_t;
typedef _Float128 double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 129
typedef _Float128x float_t;
typedef _Float128x double_t;
# else
# error "Unknown __GLIBC_FLT_EVAL_METHOD"
# endif
#endif
/* Define macros for the return values of ilogb and llogb, based on
__FP_LOGB0_IS_MIN and __FP_LOGBNAN_IS_MIN.
FP_ILOGB0 Expands to a value returned by `ilogb (0.0)'.
FP_ILOGBNAN Expands to a value returned by `ilogb (NAN)'.
FP_LLOGB0 Expands to a value returned by `llogb (0.0)'.
FP_LLOGBNAN Expands to a value returned by `llogb (NAN)'.
*/
#include
#ifdef __USE_ISOC99
# if __FP_LOGB0_IS_MIN
# define FP_ILOGB0 (-2147483647 - 1)
# else
# define FP_ILOGB0 (-2147483647)
# endif
# if __FP_LOGBNAN_IS_MIN
# define FP_ILOGBNAN (-2147483647 - 1)
# else
# define FP_ILOGBNAN 2147483647
# endif
#endif
#if __GLIBC_USE (IEC_60559_BFP_EXT)
# if __WORDSIZE == 32
# define __FP_LONG_MAX 0x7fffffffL
# else
# define __FP_LONG_MAX 0x7fffffffffffffffL
# endif
# if __FP_LOGB0_IS_MIN
# define FP_LLOGB0 (-__FP_LONG_MAX - 1)
# else
# define FP_LLOGB0 (-__FP_LONG_MAX)
# endif
# if __FP_LOGBNAN_IS_MIN
# define FP_LLOGBNAN (-__FP_LONG_MAX - 1)
# else
# define FP_LLOGBNAN __FP_LONG_MAX
# endif
#endif
/* Get the architecture specific values describing the floating-point
evaluation. The following symbols will get defined:
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL
If defined it indicates that the `fma' function
generally executes about as fast as a multiply and an add.
This macro is defined only iff the `fma' function is
implemented directly with a hardware multiply-add instructions.
*/
#include
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Rounding direction macros for fromfp functions. */
enum
{
FP_INT_UPWARD =
# define FP_INT_UPWARD 0
FP_INT_UPWARD,
FP_INT_DOWNWARD =
# define FP_INT_DOWNWARD 1
FP_INT_DOWNWARD,
FP_INT_TOWARDZERO =
# define FP_INT_TOWARDZERO 2
FP_INT_TOWARDZERO,
FP_INT_TONEARESTFROMZERO =
# define FP_INT_TONEARESTFROMZERO 3
FP_INT_TONEARESTFROMZERO,
FP_INT_TONEAREST =
# define FP_INT_TONEAREST 4
FP_INT_TONEAREST,
};
#endif
/* The file contains the prototypes for all the
actual math functions. These macros are used for those prototypes,
so we can easily declare each function as both `name' and `__name',
and can declare the float versions `namef' and `__namef'. */
#define __SIMD_DECL(function) __CONCAT (__DECL_SIMD_, function)
#define __MATHCALL_VEC(function, suffix, args) \
__SIMD_DECL (__MATH_PRECNAME (function, suffix)) \
__MATHCALL (function, suffix, args)
#define __MATHDECL_VEC(type, function,suffix, args) \
__SIMD_DECL (__MATH_PRECNAME (function, suffix)) \
__MATHDECL(type, function,suffix, args)
#define __MATHCALL(function,suffix, args) \
__MATHDECL (_Mdouble_,function,suffix, args)
#define __MATHDECL(type, function,suffix, args) \
__MATHDECL_1(type, function,suffix, args); \
__MATHDECL_1(type, __CONCAT(__,function),suffix, args)
#define __MATHCALLX(function,suffix, args, attrib) \
__MATHDECLX (_Mdouble_,function,suffix, args, attrib)
#define __MATHDECLX(type, function,suffix, args, attrib) \
__MATHDECL_1(type, function,suffix, args) __attribute__ (attrib); \
__MATHDECL_1(type, __CONCAT(__,function),suffix, args) __attribute__ (attrib)
#define __MATHDECL_1(type, function,suffix, args) \
extern type __MATH_PRECNAME(function,suffix) args __THROW
#define _Mdouble_ double
#define __MATH_PRECNAME(name,r) __CONCAT(name,r)
#define __MATH_DECLARING_DOUBLE 1
#define __MATH_DECLARING_FLOATN 0
#include
#include
#undef _Mdouble_
#undef __MATH_PRECNAME
#undef __MATH_DECLARING_DOUBLE
#undef __MATH_DECLARING_FLOATN
#ifdef __USE_ISOC99
/* Include the file of declarations again, this time using `float'
instead of `double' and appending f to each function name. */
# ifndef _Mfloat_
# define _Mfloat_ float
# endif
# define _Mdouble_ _Mfloat_
# define __MATH_PRECNAME(name,r) name##f##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# include
# include
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# if !(defined __NO_LONG_DOUBLE_MATH && defined _LIBC) \
|| defined __LDBL_COMPAT \
|| defined _LIBC_TEST
# ifdef __LDBL_COMPAT
# ifdef __USE_ISOC99
extern float __nldbl_nexttowardf (float __x, long double __y)
__THROW __attribute__ ((__const__));
# ifdef __REDIRECT_NTH
extern float __REDIRECT_NTH (nexttowardf, (float __x, long double __y),
__nldbl_nexttowardf)
__attribute__ ((__const__));
extern double __REDIRECT_NTH (nexttoward, (double __x, long double __y),
nextafter) __attribute__ ((__const__));
extern long double __REDIRECT_NTH (nexttowardl,
(long double __x, long double __y),
nextafter) __attribute__ ((__const__));
# endif
# endif
# undef __MATHDECL_1
# define __MATHDECL_2(type, function,suffix, args, alias) \
extern type __REDIRECT_NTH(__MATH_PRECNAME(function,suffix), \
args, alias)
# define __MATHDECL_1(type, function,suffix, args) \
__MATHDECL_2(type, function,suffix, args, __CONCAT(function,suffix))
# endif
/* Include the file of declarations again, this time using `long double'
instead of `double' and appending l to each function name. */
# ifndef _Mlong_double_
# define _Mlong_double_ long double
# endif
# define _Mdouble_ _Mlong_double_
# define __MATH_PRECNAME(name,r) name##l##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define __MATH_DECLARE_LDOUBLE 1
# include
# include
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# endif /* !(__NO_LONG_DOUBLE_MATH && _LIBC) || __LDBL_COMPAT */
#endif /* Use ISO C99. */
/* Include the file of declarations again, this time using `_Float128'
instead of `double' and appending f128 to each function name. */
#if __HAVE_DISTINCT_FLOAT128 || (__HAVE_FLOAT128 && !defined _LIBC)
# ifndef _Mfloat128_
# define _Mfloat128_ _Float128
# endif
# define _Mdouble_ _Mfloat128_
# define __MATH_PRECNAME(name,r) name##f128##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT128
# include
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT128. */
#undef __MATHDECL_1
#undef __MATHDECL
#undef __MATHCALL
#if defined __USE_MISC || defined __USE_XOPEN
/* This variable is used by `gamma' and `lgamma'. */
extern int signgam;
#endif
/* Depending on the type of TG_ARG, call an appropriately suffixed
version of FUNC with arguments (including parentheses) ARGS.
Suffixed functions may not exist for long double if it has the same
format as double, or for other types with the same format as float,
double or long double. The behavior is undefined if the argument
does not have a real floating type. The definition may use a
conditional expression, so all suffixed versions of FUNC must
return the same type (FUNC may include a cast if necessary rather
than being a single identifier). */
#ifdef __NO_LONG_DOUBLE_MATH
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
(sizeof (TG_ARG) == sizeof (float) ? FUNC ## f ARGS : FUNC ARGS)
#elif __HAVE_DISTINCT_FLOAT128
# if __HAVE_GENERIC_SELECTION
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
_Generic ((TG_ARG), \
float: FUNC ## f ARGS, \
default: FUNC ARGS, \
long double: FUNC ## l ARGS, \
_Float128: FUNC ## f128 ARGS)
# else
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), float), \
FUNC ## f ARGS, \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), double), \
FUNC ARGS, \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), long double), \
FUNC ## l ARGS, \
FUNC ## f128 ARGS)))
# endif
#else
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
(sizeof (TG_ARG) == sizeof (float) \
? FUNC ## f ARGS \
: sizeof (TG_ARG) == sizeof (double) \
? FUNC ARGS \
: FUNC ## l ARGS)
#endif
/* ISO C99 defines some generic macros which work on any data type. */
#ifdef __USE_ISOC99
/* All floating-point numbers can be put in one of these categories. */
enum
{
FP_NAN =
# define FP_NAN 0
FP_NAN,
FP_INFINITE =
# define FP_INFINITE 1
FP_INFINITE,
FP_ZERO =
# define FP_ZERO 2
FP_ZERO,
FP_SUBNORMAL =
# define FP_SUBNORMAL 3
FP_SUBNORMAL,
FP_NORMAL =
# define FP_NORMAL 4
FP_NORMAL
};
/* GCC bug 66462 means we cannot use the math builtins with -fsignaling-nan,
so disable builtins if this is enabled. When fixed in a newer GCC,
the __SUPPORT_SNAN__ check may be skipped for those versions. */
/* Return number of classification appropriate for X. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__ \
&& !defined __OPTIMIZE_SIZE__
# define fpclassify(x) __builtin_fpclassify (FP_NAN, FP_INFINITE, \
FP_NORMAL, FP_SUBNORMAL, FP_ZERO, x)
# else
# define fpclassify(x) __MATH_TG ((x), __fpclassify, (x))
# endif
/* Return nonzero value if sign of X is negative. */
# if __GNUC_PREREQ (6,0)
# define signbit(x) __builtin_signbit (x)
# elif __GNUC_PREREQ (4,0)
# define signbit(x) __MATH_TG ((x), __builtin_signbit, (x))
# else
# define signbit(x) __MATH_TG ((x), __signbit, (x))
# endif
/* Return nonzero value if X is not +-Inf or NaN. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isfinite(x) __builtin_isfinite (x)
# else
# define isfinite(x) __MATH_TG ((x), __finite, (x))
# endif
/* Return nonzero value if X is neither zero, subnormal, Inf, nor NaN. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isnormal(x) __builtin_isnormal (x)
# else
# define isnormal(x) (fpclassify (x) == FP_NORMAL)
# endif
/* Return nonzero value if X is a NaN. We could use `fpclassify' but
we already have this functions `__isnan' and it is faster. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isnan(x) __builtin_isnan (x)
# else
# define isnan(x) __MATH_TG ((x), __isnan, (x))
# endif
/* Return nonzero value if X is positive or negative infinity. */
# if __HAVE_DISTINCT_FLOAT128 && !__GNUC_PREREQ (7,0) \
&& !defined __SUPPORT_SNAN__ && !defined __cplusplus
/* Since __builtin_isinf_sign is broken for float128 before GCC 7.0,
use the helper function, __isinff128, with older compilers. This is
only provided for C mode, because in C++ mode, GCC has no support
for __builtin_types_compatible_p (and when in C++ mode, this macro is
not used anyway, because libstdc++ headers undefine it). */
# define isinf(x) \
(__builtin_types_compatible_p (__typeof (x), _Float128) \
? __isinff128 (x) : __builtin_isinf_sign (x))
# elif __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isinf(x) __builtin_isinf_sign (x)
# else
# define isinf(x) __MATH_TG ((x), __isinf, (x))
# endif
/* Bitmasks for the math_errhandling macro. */
# define MATH_ERRNO 1 /* errno set by math functions. */
# define MATH_ERREXCEPT 2 /* Exceptions raised by math functions. */
/* By default all functions support both errno and exception handling.
In gcc's fast math mode and if inline functions are defined this
might not be true. */
# ifndef __FAST_MATH__
# define math_errhandling (MATH_ERRNO | MATH_ERREXCEPT)
# endif
#endif /* Use ISO C99. */
#if __GLIBC_USE (IEC_60559_BFP_EXT)
# include
/* Return nonzero value if X is a signaling NaN. */
# ifndef __cplusplus
# define issignaling(x) __MATH_TG ((x), __issignaling, (x))
# else
/* In C++ mode, __MATH_TG cannot be used, because it relies on
__builtin_types_compatible_p, which is a C-only builtin. On the
other hand, overloading provides the means to distinguish between
the floating-point types. The overloading resolution will match
the correct parameter (regardless of type qualifiers (i.e.: const
and volatile). */
extern "C++" {
inline int issignaling (float __val) { return __issignalingf (__val); }
inline int issignaling (double __val) { return __issignaling (__val); }
inline int
issignaling (long double __val)
{
# ifdef __NO_LONG_DOUBLE_MATH
return __issignaling (__val);
# else
return __issignalingl (__val);
# endif
}
# if __HAVE_DISTINCT_FLOAT128
inline int issignaling (_Float128 __val) { return __issignalingf128 (__val); }
# endif
} /* extern C++ */
# endif
/* Return nonzero value if X is subnormal. */
# define issubnormal(x) (fpclassify (x) == FP_SUBNORMAL)
/* Return nonzero value if X is zero. */
# ifndef __cplusplus
# ifdef __SUPPORT_SNAN__
# define iszero(x) (fpclassify (x) == FP_ZERO)
# else
# define iszero(x) (((__typeof (x)) (x)) == 0)
# endif
# else /* __cplusplus */
extern "C++" {
template inline bool
iszero (__T __val)
{
# ifdef __SUPPORT_SNAN__
return fpclassify (__val) == FP_ZERO;
# else
return __val == 0;
# endif
}
} /* extern C++ */
# endif /* __cplusplus */
#endif /* Use IEC_60559_BFP_EXT. */
#ifdef __USE_XOPEN
/* X/Open wants another strange constant. */
# define MAXFLOAT 3.40282347e+38F
#endif
/* Some useful constants. */
#if defined __USE_MISC || defined __USE_XOPEN
# define M_E 2.7182818284590452354 /* e */
# define M_LOG2E 1.4426950408889634074 /* log_2 e */
# define M_LOG10E 0.43429448190325182765 /* log_10 e */
# define M_LN2 0.69314718055994530942 /* log_e 2 */
# define M_LN10 2.30258509299404568402 /* log_e 10 */
# define M_PI 3.14159265358979323846 /* pi */
# define M_PI_2 1.57079632679489661923 /* pi/2 */
# define M_PI_4 0.78539816339744830962 /* pi/4 */
# define M_1_PI 0.31830988618379067154 /* 1/pi */
# define M_2_PI 0.63661977236758134308 /* 2/pi */
# define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
# define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
# define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#endif
/* The above constants are not adequate for computation using `long double's.
Therefore we provide as an extension constants with similar names as a
GNU extension. Provide enough digits for the 128-bit IEEE quad. */
#ifdef __USE_GNU
# define M_El 2.718281828459045235360287471352662498L /* e */
# define M_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */
# define M_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */
# define M_LN2l 0.693147180559945309417232121458176568L /* log_e 2 */
# define M_LN10l 2.302585092994045684017991454684364208L /* log_e 10 */
# define M_PIl 3.141592653589793238462643383279502884L /* pi */
# define M_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */
# define M_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */
# define M_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */
# define M_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */
# define M_2_SQRTPIl 1.128379167095512573896158903121545172L /* 2/sqrt(pi) */
# define M_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
# define M_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT128 && defined __USE_GNU
# define M_Ef128 __f128 (2.718281828459045235360287471352662498) /* e */
# define M_LOG2Ef128 __f128 (1.442695040888963407359924681001892137) /* log_2 e */
# define M_LOG10Ef128 __f128 (0.434294481903251827651128918916605082) /* log_10 e */
# define M_LN2f128 __f128 (0.693147180559945309417232121458176568) /* log_e 2 */
# define M_LN10f128 __f128 (2.302585092994045684017991454684364208) /* log_e 10 */
# define M_PIf128 __f128 (3.141592653589793238462643383279502884) /* pi */
# define M_PI_2f128 __f128 (1.570796326794896619231321691639751442) /* pi/2 */
# define M_PI_4f128 __f128 (0.785398163397448309615660845819875721) /* pi/4 */
# define M_1_PIf128 __f128 (0.318309886183790671537767526745028724) /* 1/pi */
# define M_2_PIf128 __f128 (0.636619772367581343075535053490057448) /* 2/pi */
# define M_2_SQRTPIf128 __f128 (1.128379167095512573896158903121545172) /* 2/sqrt(pi) */
# define M_SQRT2f128 __f128 (1.414213562373095048801688724209698079) /* sqrt(2) */
# define M_SQRT1_2f128 __f128 (0.707106781186547524400844362104849039) /* 1/sqrt(2) */
#endif
/* When compiling in strict ISO C compatible mode we must not use the
inline functions since they, among other things, do not set the
`errno' variable correctly. */
#if defined __STRICT_ANSI__ && !defined __NO_MATH_INLINES
# define __NO_MATH_INLINES 1
#endif
#if defined __USE_ISOC99 && __GNUC_PREREQ(2,97)
/* ISO C99 defines some macros to compare number while taking care for
unordered numbers. Many FPUs provide special instructions to support
these operations. Generic support in GCC for these as builtins went
in before 3.0.0, but not all cpus added their patterns. We define
versions that use the builtins here, and will
undef/redefine as appropriate for the specific GCC version in use. */
# define isgreater(x, y) __builtin_isgreater(x, y)
# define isgreaterequal(x, y) __builtin_isgreaterequal(x, y)
# define isless(x, y) __builtin_isless(x, y)
# define islessequal(x, y) __builtin_islessequal(x, y)
# define islessgreater(x, y) __builtin_islessgreater(x, y)
# define isunordered(u, v) __builtin_isunordered(u, v)
#endif
/* Get machine-dependent inline versions (if there are any). */
#ifdef __USE_EXTERN_INLINES
# include
#endif
/* Define special entry points to use when the compiler got told to
only expect finite results. */
#if defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0
/* Include bits/math-finite.h for double. */
# define _Mdouble_ double
# define __MATH_DECLARING_DOUBLE 1
# define __MATH_DECLARING_FLOATN 0
# define _MSUF_
# define _MSUFTO_
# include
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef _MSUF_
# undef _MSUFTO_
/* When __USE_ISOC99 is defined, include math-finite for float and
long double, as well. */
# ifdef __USE_ISOC99
/* Include bits/math-finite.h for float. */
# define _Mdouble_ float
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define _MSUF_ f
# define _MSUFTO_ f
# include
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef _MSUF_
# undef _MSUFTO_
/* Include bits/math-finite.h for long double. */
# ifdef __MATH_DECLARE_LDOUBLE
# define _Mdouble_ long double
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define _MSUF_ l
# ifdef __NO_LONG_DOUBLE_MATH
# define _MSUFTO_
# else
# define _MSUFTO_ l
# endif
# include
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef _MSUF_
# undef _MSUFTO_
# endif
# endif /* __USE_ISOC99. */
/* Include bits/math-finite.h for float128. */
# if (__HAVE_DISTINCT_FLOAT128 || (__HAVE_FLOAT128 && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float128
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define _MSUF_ f128
# if __HAVE_DISTINCT_FLOAT128
# define _MSUFTO_ f128
# else
# define _MSUFTO_ l
# endif
# include
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef _MSUF_
# undef _MSUFTO_
# endif
#endif /* __FINITE_MATH_ONLY__ > 0. */
#ifdef __USE_ISOC99
/* If we've still got undefined comparison macros, provide defaults. */
/* Return nonzero value if X is greater than Y. */
# ifndef isgreater
# define isgreater(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && __x > __y; }))
# endif
/* Return nonzero value if X is greater than or equal to Y. */
# ifndef isgreaterequal
# define isgreaterequal(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && __x >= __y; }))
# endif
/* Return nonzero value if X is less than Y. */
# ifndef isless
# define isless(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && __x < __y; }))
# endif
/* Return nonzero value if X is less than or equal to Y. */
# ifndef islessequal
# define islessequal(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && __x <= __y; }))
# endif
/* Return nonzero value if either X is less than Y or Y is less than X. */
# ifndef islessgreater
# define islessgreater(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && (__x < __y || __y < __x); }))
# endif
/* Return nonzero value if arguments are unordered. */
# ifndef isunordered
# define isunordered(u, v) \
(__extension__ \
({ __typeof__(u) __u = (u); __typeof__(v) __v = (v); \
fpclassify (__u) == FP_NAN || fpclassify (__v) == FP_NAN; }))
# endif
#endif
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* An expression whose type has the widest of the evaluation formats
of X and Y (which are of floating-point types). */
# if __FLT_EVAL_METHOD__ == 2 || __FLT_EVAL_METHOD__ > 64
# define __MATH_EVAL_FMT2(x, y) ((x) + (y) + 0.0L)
# elif __FLT_EVAL_METHOD__ == 1 || __FLT_EVAL_METHOD__ > 32
# define __MATH_EVAL_FMT2(x, y) ((x) + (y) + 0.0)
# else
# define __MATH_EVAL_FMT2(x, y) ((x) + (y))
# endif
/* Return X == Y but raising "invalid" and setting errno if X or Y is
a NaN. */
# define iseqsig(x, y) \
__MATH_TG (__MATH_EVAL_FMT2 (x, y), __iseqsig, ((x), (y)))
#endif
__END_DECLS
#endif /* math.h */