/* Return arc hyperbolic sine for a complex float type, with the imaginary part of the result possibly adjusted for use in computing other functions. Copyright (C) 1997-2022 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include /* Return the complex inverse hyperbolic sine of finite nonzero Z, with the imaginary part of the result subtracted from pi/2 if ADJ is nonzero. */ CFLOAT M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj) { CFLOAT res; FLOAT rx, ix; CFLOAT y; /* Avoid cancellation by reducing to the first quadrant. */ rx = M_FABS (__real__ x); ix = M_FABS (__imag__ x); if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant difference to the result; avoid possible overflow from the squaring and addition. */ __real__ y = rx; __imag__ y = ix; if (adj) { FLOAT t = __real__ y; __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); __imag__ y = t; } res = M_SUF (__clog) (y); __real__ res += (FLOAT) M_MLIT (M_LN2); } else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8) { FLOAT s = M_HYPOT (1, rx); __real__ res = M_LOG (rx + s); if (adj) __imag__ res = M_ATAN2 (s, __imag__ x); else __imag__ res = M_ATAN2 (ix, s); } else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5)) { FLOAT s = M_SQRT ((ix + 1) * (ix - 1)); __real__ res = M_LOG (ix + s); if (adj) __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); else __imag__ res = M_ATAN2 (s, rx); } else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5)) { if (rx < M_EPSILON * M_EPSILON) { FLOAT ix2m1 = (ix + 1) * (ix - 1); FLOAT s = M_SQRT (ix2m1); __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2; if (adj) __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); else __imag__ res = M_ATAN2 (s, rx); } else { FLOAT ix2m1 = (ix + 1) * (ix - 1); FLOAT rx2 = rx * rx; FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); FLOAT d = M_SQRT (ix2m1 * ix2m1 + f); FLOAT dp = d + ix2m1; FLOAT dm = f / dp; FLOAT r1 = M_SQRT ((dm + rx2) / 2); FLOAT r2 = rx * ix / r1; __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2; if (adj) __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x)); else __imag__ res = M_ATAN2 (ix + r2, rx + r1); } } else if (ix == 1 && rx < M_LIT (0.5)) { if (rx < M_EPSILON / 8) { __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2; if (adj) __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x)); else __imag__ res = M_ATAN2 (1, M_SQRT (rx)); } else { FLOAT d = rx * M_SQRT (4 + rx * rx); FLOAT s1 = M_SQRT ((d + rx * rx) / 2); FLOAT s2 = M_SQRT ((d - rx * rx) / 2); __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2; if (adj) __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x)); else __imag__ res = M_ATAN2 (1 + s2, rx + s1); } } else if (ix < 1 && rx < M_LIT (0.5)) { if (ix >= M_EPSILON) { if (rx < M_EPSILON * M_EPSILON) { FLOAT onemix2 = (1 + ix) * (1 - ix); FLOAT s = M_SQRT (onemix2); __real__ res = M_LOG1P (2 * rx / s) / 2; if (adj) __imag__ res = M_ATAN2 (s, __imag__ x); else __imag__ res = M_ATAN2 (ix, s); } else { FLOAT onemix2 = (1 + ix) * (1 - ix); FLOAT rx2 = rx * rx; FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); FLOAT d = M_SQRT (onemix2 * onemix2 + f); FLOAT dp = d + onemix2; FLOAT dm = f / dp; FLOAT r1 = M_SQRT ((dp + rx2) / 2); FLOAT r2 = rx * ix / r1; __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2; if (adj) __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x)); else __imag__ res = M_ATAN2 (ix + r2, rx + r1); } } else { FLOAT s = M_HYPOT (1, rx); __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2; if (adj) __imag__ res = M_ATAN2 (s, __imag__ x); else __imag__ res = M_ATAN2 (ix, s); } math_check_force_underflow_nonneg (__real__ res); } else { __real__ y = (rx - ix) * (rx + ix) + 1; __imag__ y = 2 * rx * ix; y = M_SUF (__csqrt) (y); __real__ y += rx; __imag__ y += ix; if (adj) { FLOAT t = __real__ y; __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); __imag__ y = t; } res = M_SUF (__clog) (y); } /* Give results the correct sign for the original argument. */ __real__ res = M_COPYSIGN (__real__ res, __real__ x); __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x)); return res; }