/* Test case for async-signal-safe fork (with respect to malloc).
Copyright (C) 2016-2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, see . */
/* This test will fail if the process is multi-threaded because we
only have an async-signal-safe fork in the single-threaded case
(where we skip acquiring the malloc heap locks).
This test only checks async-signal-safety with regards to malloc;
other, more rarely-used glibc subsystems could have locks which
still make fork unsafe, even in single-threaded processes. */
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/* How many malloc objects to keep arond. */
enum { malloc_objects = 1009 };
/* The maximum size of an object. */
enum { malloc_maximum_size = 70000 };
/* How many iterations the test performs before exiting. */
enum { iterations = 10000 };
/* Barrier for synchronization with the processes sending SIGUSR1
signals, to make it more likely that the signals arrive during a
fork/free/malloc call. */
static struct { pthread_barrier_t barrier; } *shared;
/* Set to 1 if SIGUSR1 is received. Used to detect a signal during
fork/free/malloc. */
static volatile sig_atomic_t sigusr1_received;
/* Periodically set to 1, to indicate that the process is making
progress. Checked by liveness_signal_handler. */
static volatile sig_atomic_t progress_indicator = 1;
/* Set to 1 if an error occurs in the signal handler. */
static volatile sig_atomic_t error_indicator = 0;
static void
sigusr1_handler (int signo)
{
sigusr1_received = 1;
/* Perform a fork with a trivial subprocess. */
pid_t pid = fork ();
if (pid == -1)
{
write_message ("error: fork\n");
error_indicator = 1;
return;
}
if (pid == 0)
_exit (0);
int status;
int ret = TEMP_FAILURE_RETRY (waitpid (pid, &status, 0));
if (ret < 0)
{
write_message ("error: waitpid\n");
error_indicator = 1;
return;
}
if (status != 0)
{
write_message ("error: unexpected exit status from subprocess\n");
error_indicator = 1;
return;
}
}
static void
liveness_signal_handler (int signo)
{
if (progress_indicator)
progress_indicator = 0;
else
write_message ("warning: process seems to be stuck\n");
}
/* Send SIGNO to the parent process. If SLEEP, wait a second between
signals, otherwise use barriers to delay sending signals. */
static void
__attribute__ ((noreturn))
signal_sender (int signo, bool sleep)
{
pid_t target = getppid ();
while (true)
{
if (!sleep)
xpthread_barrier_wait (&shared->barrier);
if (kill (target, signo) != 0)
{
dprintf (STDOUT_FILENO, "error: kill: %m\n");
abort ();
}
if (sleep)
usleep (1 * 1000 * 1000);
else
xpthread_barrier_wait (&shared->barrier);
}
}
/* Children processes. */
static pid_t sigusr1_sender_pids[5] = { 0 };
static pid_t sigusr2_sender_pid = 0;
static void
kill_children (void)
{
for (size_t i = 0; i < array_length (sigusr1_sender_pids); ++i)
if (sigusr1_sender_pids[i] > 0)
kill (sigusr1_sender_pids[i], SIGKILL);
if (sigusr2_sender_pid > 0)
kill (sigusr2_sender_pid, SIGKILL);
}
static int
do_test (void)
{
atexit (kill_children);
/* shared->barrier is intialized along with sigusr1_sender_pids
below. */
shared = support_shared_allocate (sizeof (*shared));
struct sigaction action =
{
.sa_handler = sigusr1_handler,
};
sigemptyset (&action.sa_mask);
if (sigaction (SIGUSR1, &action, NULL) != 0)
{
printf ("error: sigaction: %m");
return 1;
}
action.sa_handler = liveness_signal_handler;
if (sigaction (SIGUSR2, &action, NULL) != 0)
{
printf ("error: sigaction: %m");
return 1;
}
sigusr2_sender_pid = xfork ();
if (sigusr2_sender_pid == 0)
signal_sender (SIGUSR2, true);
/* Send SIGUSR1 signals from several processes. Hopefully, one
signal will hit one of the ciritical functions. Use a barrier to
avoid sending signals while not running fork/free/malloc. */
{
pthread_barrierattr_t attr;
xpthread_barrierattr_init (&attr);
xpthread_barrierattr_setpshared (&attr, PTHREAD_PROCESS_SHARED);
xpthread_barrier_init (&shared->barrier, &attr,
array_length (sigusr1_sender_pids) + 1);
xpthread_barrierattr_destroy (&attr);
}
for (size_t i = 0; i < array_length (sigusr1_sender_pids); ++i)
{
sigusr1_sender_pids[i] = xfork ();
if (sigusr1_sender_pids[i] == 0)
signal_sender (SIGUSR1, false);
}
void *objects[malloc_objects] = {};
unsigned int fork_signals = 0;
unsigned int free_signals = 0;
unsigned int malloc_signals = 0;
unsigned seed = 1;
for (int i = 0; i < iterations; ++i)
{
progress_indicator = 1;
int slot = rand_r (&seed) % malloc_objects;
size_t size = rand_r (&seed) % malloc_maximum_size;
/* Occasionally do a fork first, to catch deadlocks there as
well (see bug 24161). */
bool do_fork = (rand_r (&seed) % 7) == 0;
xpthread_barrier_wait (&shared->barrier);
if (do_fork)
{
sigusr1_received = 0;
pid_t pid = xfork ();
if (sigusr1_received)
++fork_signals;
if (pid == 0)
_exit (0);
int status;
int ret = TEMP_FAILURE_RETRY (waitpid (pid, &status, 0));
if (ret < 0)
FAIL_EXIT1 ("waitpid: %m");
TEST_COMPARE (status, 0);
}
sigusr1_received = 0;
free (objects[slot]);
if (sigusr1_received)
++free_signals;
sigusr1_received = 0;
objects[slot] = malloc (size);
if (sigusr1_received)
++malloc_signals;
xpthread_barrier_wait (&shared->barrier);
if (objects[slot] == NULL || error_indicator != 0)
{
printf ("error: malloc: %m\n");
for (size_t i = 0; i < array_length (sigusr1_sender_pids); ++i)
kill (sigusr1_sender_pids[i], SIGKILL);
kill (sigusr2_sender_pid, SIGKILL);
return 1;
}
}
/* Clean up allocations. */
for (int slot = 0; slot < malloc_objects; ++slot)
free (objects[slot]);
printf ("info: signals received during fork: %u\n", fork_signals);
printf ("info: signals received during free: %u\n", free_signals);
printf ("info: signals received during malloc: %u\n", malloc_signals);
/* Do not destroy the barrier because of the SIGKILL above, which
may have left the barrier in an inconsistent state. */
support_shared_free (shared);
return 0;
}
#define TIMEOUT 100
#include