/* Test allocation function behavior on allocation failure.
Copyright (C) 2015-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, see . */
/* This test case attempts to trigger various unusual conditions
related to allocation failures, notably switching to a different
arena, and falling back to mmap (via sysmalloc). */
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/* Wrapper for calloc with an optimization barrier. */
static void *
__attribute__ ((noinline, noclone))
allocate_zeroed (size_t a, size_t b)
{
return calloc (a, b);
}
/* System page size, as determined by sysconf (_SC_PAGE_SIZE). */
static unsigned long page_size;
/* Test parameters. */
static size_t allocation_size;
static size_t alignment;
static enum {
with_malloc,
with_realloc,
with_aligned_alloc,
with_memalign,
with_posix_memalign,
with_valloc,
with_pvalloc,
with_calloc,
last_allocation_function = with_calloc
} allocation_function;
/* True if an allocation function uses the alignment test
parameter. */
const static bool alignment_sensitive[last_allocation_function + 1] =
{
[with_aligned_alloc] = true,
[with_memalign] = true,
[with_posix_memalign] = true,
};
/* Combined pointer/expected alignment result of an allocation
function. */
struct allocate_result {
void *pointer;
size_t alignment;
};
/* Call the allocation function specified by allocation_function, with
allocation_size and alignment (if applicable) as arguments. No
alignment check. */
static struct allocate_result
allocate_1 (void)
{
switch (allocation_function)
{
case with_malloc:
return (struct allocate_result)
{malloc (allocation_size), _Alignof (max_align_t)};
case with_realloc:
{
void *p = realloc (NULL, 16);
void *q;
if (p == NULL)
q = NULL;
else
{
q = realloc (p, allocation_size);
if (q == NULL)
free (p);
}
return (struct allocate_result) {q, _Alignof (max_align_t)};
}
case with_aligned_alloc:
{
void *p = aligned_alloc (alignment, allocation_size);
return (struct allocate_result) {p, alignment};
}
case with_memalign:
{
void *p = memalign (alignment, allocation_size);
return (struct allocate_result) {p, alignment};
}
case with_posix_memalign:
{
void *p;
if (posix_memalign (&p, alignment, allocation_size))
{
if (errno == ENOMEM)
p = NULL;
else
{
printf ("error: posix_memalign (p, %zu, %zu): %m\n",
alignment, allocation_size);
abort ();
}
}
return (struct allocate_result) {p, alignment};
}
case with_valloc:
{
void *p = valloc (allocation_size);
return (struct allocate_result) {p, page_size};
}
case with_pvalloc:
{
void *p = pvalloc (allocation_size);
return (struct allocate_result) {p, page_size};
}
case with_calloc:
{
char *p = allocate_zeroed (1, allocation_size);
/* Check for non-zero bytes. */
if (p != NULL)
for (size_t i = 0; i < allocation_size; ++i)
if (p[i] != 0)
{
printf ("error: non-zero byte at offset %zu\n", i);
abort ();
}
return (struct allocate_result) {p, _Alignof (max_align_t)};
}
}
abort ();
}
/* Call allocate_1 and perform the alignment check on the result. */
static void *
allocate (void)
{
struct allocate_result r = allocate_1 ();
if ((((uintptr_t) r.pointer) & (r.alignment - 1)) != 0)
{
printf ("error: allocation function %d, size %zu not aligned to %zu\n",
(int) allocation_function, allocation_size, r.alignment);
abort ();
}
return r.pointer;
}
/* Barriers to synchronize thread creation and termination. */
static pthread_barrier_t start_barrier;
static pthread_barrier_t end_barrier;
/* Thread function which performs the allocation test. Called by
pthread_create and from the main thread. */
static void *
allocate_thread (void *closure)
{
/* Wait for the creation of all threads. */
{
int ret = pthread_barrier_wait (&start_barrier);
if (ret != 0 && ret != PTHREAD_BARRIER_SERIAL_THREAD)
{
errno = ret;
printf ("error: pthread_barrier_wait: %m\n");
abort ();
}
}
/* Allocate until we run out of memory, creating a single-linked
list. */
struct list {
struct list *next;
};
struct list *head = NULL;
while (true)
{
struct list *e = allocate ();
if (e == NULL)
break;
e->next = head;
head = e;
}
/* Wait for the allocation of all available memory. */
{
int ret = pthread_barrier_wait (&end_barrier);
if (ret != 0 && ret != PTHREAD_BARRIER_SERIAL_THREAD)
{
errno = ret;
printf ("error: pthread_barrier_wait: %m\n");
abort ();
}
}
/* Free the allocated memory. */
while (head != NULL)
{
struct list *next = head->next;
free (head);
head = next;
}
return NULL;
}
/* Number of threads (plus the main thread. */
enum { thread_count = 8 };
/* Thread attribute to request creation of threads with a non-default
stack size which is rather small. This avoids interfering with the
configured address space limit. */
static pthread_attr_t small_stack;
/* Runs one test in multiple threads, all in a subprocess so that
subsequent tests do not interfere with each other. */
static void
run_one (void)
{
/* Isolate the tests in a subprocess, so that we can start over
from scratch. */
pid_t pid = fork ();
if (pid == 0)
{
/* In the child process. Create the allocation threads. */
pthread_t threads[thread_count];
for (unsigned i = 0; i < thread_count; ++i)
{
int ret = pthread_create (threads + i, &small_stack, allocate_thread, NULL);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_create: %m\n");
abort ();
}
}
/* Also run the test on the main thread. */
allocate_thread (NULL);
for (unsigned i = 0; i < thread_count; ++i)
{
int ret = pthread_join (threads[i], NULL);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_join: %m\n");
abort ();
}
}
_exit (0);
}
else if (pid < 0)
{
printf ("error: fork: %m\n");
abort ();
}
/* In the parent process. Wait for the child process to exit. */
int status;
if (waitpid (pid, &status, 0) < 0)
{
printf ("error: waitpid: %m\n");
abort ();
}
if (status != 0)
{
printf ("error: exit status %d from child process\n", status);
exit (1);
}
}
/* Run all applicable allocation functions for the current test
parameters. */
static void
run_allocation_functions (void)
{
for (int af = 0; af <= last_allocation_function; ++af)
{
/* Run alignment-sensitive functions for non-default
alignments. */
if (alignment_sensitive[af] != (alignment != 0))
continue;
allocation_function = af;
run_one ();
}
}
int
do_test (void)
{
/* Limit the number of malloc arenas. We use a very low number so
that despute the address space limit configured below, all
requested arenas a can be created. */
if (mallopt (M_ARENA_MAX, 2) == 0)
{
printf ("error: mallopt (M_ARENA_MAX) failed\n");
return 1;
}
/* Determine the page size. */
{
long ret = sysconf (_SC_PAGE_SIZE);
if (ret < 0)
{
printf ("error: sysconf (_SC_PAGE_SIZE): %m\n");
return 1;
}
page_size = ret;
}
/* Limit the size of the process, so that memory allocation in
allocate_thread will eventually fail, without impacting the
entire system. */
{
struct rlimit limit;
if (getrlimit (RLIMIT_AS, &limit) != 0)
{
printf ("getrlimit (RLIMIT_AS) failed: %m\n");
return 1;
}
long target = 200 * 1024 * 1024;
if (limit.rlim_cur == RLIM_INFINITY || limit.rlim_cur > target)
{
limit.rlim_cur = target;
if (setrlimit (RLIMIT_AS, &limit) != 0)
{
printf ("setrlimit (RLIMIT_AS) failed: %m\n");
return 1;
}
}
}
/* Initialize thread attribute with a reduced stack size. */
{
int ret = pthread_attr_init (&small_stack);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_attr_init: %m\n");
abort ();
}
unsigned long stack_size = ((256 * 1024) / page_size) * page_size;
if (stack_size < 4 * page_size)
stack_size = 8 * page_size;
ret = pthread_attr_setstacksize (&small_stack, stack_size);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_attr_setstacksize: %m\n");
abort ();
}
}
/* Initialize the barriers. We run thread_count threads, plus 1 for
the main thread. */
{
int ret = pthread_barrier_init (&start_barrier, NULL, thread_count + 1);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_barrier_init: %m\n");
abort ();
}
ret = pthread_barrier_init (&end_barrier, NULL, thread_count + 1);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_barrier_init: %m\n");
abort ();
}
}
allocation_size = 144;
run_allocation_functions ();
allocation_size = page_size;
run_allocation_functions ();
alignment = 128;
allocation_size = 512;
run_allocation_functions ();
allocation_size = page_size;
run_allocation_functions ();
allocation_size = 17 * page_size;
run_allocation_functions ();
/* Deallocation the barriers and the thread attribute. */
{
int ret = pthread_barrier_destroy (&end_barrier);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_barrier_destroy: %m\n");
return 1;
}
ret = pthread_barrier_destroy (&start_barrier);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_barrier_destroy: %m\n");
return 1;
}
ret = pthread_attr_destroy (&small_stack);
if (ret != 0)
{
errno = ret;
printf ("error: pthread_attr_destroy: %m\n");
return 1;
}
}
return 0;
}
/* The repeated allocations take some time on slow machines. */
#define TIMEOUT 100
#define TEST_FUNCTION do_test ()
#include "../test-skeleton.c"