/* Linuxthreads - a simple clone()-based implementation of Posix */ /* threads for Linux. */ /* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */ /* */ /* This program is free software; you can redistribute it and/or */ /* modify it under the terms of the GNU Library General Public License */ /* as published by the Free Software Foundation; either version 2 */ /* of the License, or (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU Library General Public License for more details. */ /* Mutexes */ #include #include #include #include "pthread.h" #include "internals.h" #include "spinlock.h" #include "queue.h" #include "restart.h" int __pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t * mutex_attr) { mutex->m_spinlock = 0; mutex->m_count = 0; mutex->m_owner = NULL; mutex->m_kind = mutex_attr == NULL ? PTHREAD_MUTEX_FAST_NP : mutex_attr->mutexkind; queue_init(&mutex->m_waiting); return 0; } weak_alias (__pthread_mutex_init, pthread_mutex_init) int __pthread_mutex_destroy(pthread_mutex_t * mutex) { int count; acquire(&mutex->m_spinlock); count = mutex->m_count; release(&mutex->m_spinlock); if (count > 0) return EBUSY; return 0; } weak_alias (__pthread_mutex_destroy, pthread_mutex_destroy) int __pthread_mutex_trylock(pthread_mutex_t * mutex) { pthread_descr self; acquire(&mutex->m_spinlock); switch(mutex->m_kind) { case PTHREAD_MUTEX_FAST_NP: if (mutex->m_count == 0) { mutex->m_count = 1; release(&mutex->m_spinlock); return 0; } break; case PTHREAD_MUTEX_RECURSIVE_NP: self = thread_self(); if (mutex->m_count == 0 || mutex->m_owner == self) { mutex->m_count++; mutex->m_owner = self; release(&mutex->m_spinlock); return 0; } break; case PTHREAD_MUTEX_ERRORCHECK_NP: self = thread_self(); if (mutex->m_count == 0) { mutex->m_count = 1; mutex->m_owner = self; release(&mutex->m_spinlock); return 0; } break; default: release(&mutex->m_spinlock); return EINVAL; } release(&mutex->m_spinlock); return EBUSY; } weak_alias (__pthread_mutex_trylock, pthread_mutex_trylock) int __pthread_mutex_lock(pthread_mutex_t * mutex) { pthread_descr self; while(1) { acquire(&mutex->m_spinlock); switch(mutex->m_kind) { case PTHREAD_MUTEX_FAST_NP: if (mutex->m_count == 0) { mutex->m_count = 1; release(&mutex->m_spinlock); return 0; } self = thread_self(); break; case PTHREAD_MUTEX_RECURSIVE_NP: self = thread_self(); if (mutex->m_count == 0 || mutex->m_owner == self) { mutex->m_count++; mutex->m_owner = self; release(&mutex->m_spinlock); return 0; } break; case PTHREAD_MUTEX_ERRORCHECK_NP: self = thread_self(); if (mutex->m_count == 0) { mutex->m_count = 1; mutex->m_owner = self; release(&mutex->m_spinlock); return 0; } else if (mutex->m_owner == self) { release(&mutex->m_spinlock); return EDEADLK; } break; default: release(&mutex->m_spinlock); return EINVAL; } /* Suspend ourselves, then try again */ enqueue(&mutex->m_waiting, self); release(&mutex->m_spinlock); suspend(self); /* This is not a cancellation point */ } } weak_alias (__pthread_mutex_lock, pthread_mutex_lock) int __pthread_mutex_unlock(pthread_mutex_t * mutex) { pthread_descr th; acquire(&mutex->m_spinlock); switch (mutex->m_kind) { case PTHREAD_MUTEX_FAST_NP: mutex->m_count = 0; break; case PTHREAD_MUTEX_RECURSIVE_NP: mutex->m_count--; if (mutex->m_count > 0) { release(&mutex->m_spinlock); return 0; } mutex->m_count = 0; /* so that excess unlocks do not break everything */ break; case PTHREAD_MUTEX_ERRORCHECK_NP: if (mutex->m_count == 0 || mutex->m_owner != thread_self()) { release(&mutex->m_spinlock); return EPERM; } mutex->m_count = 0; break; default: release(&mutex->m_spinlock); return EINVAL; } th = dequeue(&mutex->m_waiting); release(&mutex->m_spinlock); if (th != NULL) restart(th); return 0; } weak_alias (__pthread_mutex_unlock, pthread_mutex_unlock) int __pthread_mutexattr_init(pthread_mutexattr_t *attr) { attr->mutexkind = PTHREAD_MUTEX_FAST_NP; return 0; } weak_alias (__pthread_mutexattr_init, pthread_mutexattr_init) int __pthread_mutexattr_destroy(pthread_mutexattr_t *attr) { return 0; } weak_alias (__pthread_mutexattr_destroy, pthread_mutexattr_destroy) int __pthread_mutexattr_setkind_np(pthread_mutexattr_t *attr, int kind) { if (kind != PTHREAD_MUTEX_FAST_NP && kind != PTHREAD_MUTEX_RECURSIVE_NP && kind != PTHREAD_MUTEX_ERRORCHECK_NP) return EINVAL; attr->mutexkind = kind; return 0; } weak_alias (__pthread_mutexattr_setkind_np, pthread_mutexattr_setkind_np) int __pthread_mutexattr_getkind_np(const pthread_mutexattr_t *attr, int *kind) { *kind = attr->mutexkind; return 0; } weak_alias (__pthread_mutexattr_getkind_np, pthread_mutexattr_getkind_np) /* Once-only execution */ static pthread_mutex_t once_masterlock = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t once_finished = PTHREAD_COND_INITIALIZER; enum { NEVER = 0, IN_PROGRESS = 1, DONE = 2 }; int __pthread_once(pthread_once_t * once_control, void (*init_routine)(void)) { /* Test without locking first for speed */ if (*once_control == DONE) return 0; /* Lock and test again */ pthread_mutex_lock(&once_masterlock); /* If init_routine is being called from another routine, wait until it completes. */ while (*once_control == IN_PROGRESS) { pthread_cond_wait(&once_finished, &once_masterlock); } /* Here *once_control is stable and either NEVER or DONE. */ if (*once_control == NEVER) { *once_control = IN_PROGRESS; pthread_mutex_unlock(&once_masterlock); init_routine(); pthread_mutex_lock(&once_masterlock); *once_control = DONE; pthread_cond_broadcast(&once_finished); } pthread_mutex_unlock(&once_masterlock); return 0; } weak_alias (__pthread_once, pthread_once)