/* Hardware capability support for run-time dynamic loader. Copyright (C) 2012-2020 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include #include #include /* This is the result of counting the substrings in a colon-separated hwcaps string. */ struct hwcaps_counts { /* Number of substrings. */ size_t count; /* Sum of the individual substring lengths (without separators or null terminators). */ size_t total_length; /* Maximum length of an individual substring. */ size_t maximum_length; }; /* Update *COUNTS according to the contents of HWCAPS. Skip over entries whose bit is not set in MASK. */ static void update_hwcaps_counts (struct hwcaps_counts *counts, const char *hwcaps, uint32_t bitmask, const char *mask) { struct dl_hwcaps_split_masked sp; _dl_hwcaps_split_masked_init (&sp, hwcaps, bitmask, mask); while (_dl_hwcaps_split_masked (&sp)) { ++counts->count; counts->total_length += sp.split.length; if (sp.split.length > counts->maximum_length) counts->maximum_length = sp.split.length; } } /* State for copy_hwcaps. Must be initialized to point to the storage areas for the array and the strings themselves. */ struct copy_hwcaps { struct r_strlenpair *next_pair; char *next_string; }; /* Copy HWCAPS into the string pairs and strings, advancing *TARGET. Skip over entries whose bit is not set in MASK. */ static void copy_hwcaps (struct copy_hwcaps *target, const char *hwcaps, uint32_t bitmask, const char *mask) { struct dl_hwcaps_split_masked sp; _dl_hwcaps_split_masked_init (&sp, hwcaps, bitmask, mask); while (_dl_hwcaps_split_masked (&sp)) { target->next_pair->str = target->next_string; char *slash = __mempcpy (__mempcpy (target->next_string, GLIBC_HWCAPS_PREFIX, strlen (GLIBC_HWCAPS_PREFIX)), sp.split.segment, sp.split.length); *slash = '/'; target->next_pair->len = strlen (GLIBC_HWCAPS_PREFIX) + sp.split.length + 1; ++target->next_pair; target->next_string = slash + 1; } } struct dl_hwcaps_priority *_dl_hwcaps_priorities; uint32_t _dl_hwcaps_priorities_length; /* Allocate _dl_hwcaps_priorities and fill it with data. */ static void compute_priorities (size_t total_count, const char *prepend, uint32_t bitmask, const char *mask) { _dl_hwcaps_priorities = malloc (total_count * sizeof (*_dl_hwcaps_priorities)); if (_dl_hwcaps_priorities == NULL) _dl_signal_error (ENOMEM, NULL, NULL, N_("cannot create HWCAP priorities")); _dl_hwcaps_priorities_length = total_count; /* First the prepended subdirectories. */ size_t i = 0; { struct dl_hwcaps_split sp; _dl_hwcaps_split_init (&sp, prepend); while (_dl_hwcaps_split (&sp)) { _dl_hwcaps_priorities[i].name = sp.segment; _dl_hwcaps_priorities[i].name_length = sp.length; _dl_hwcaps_priorities[i].priority = i + 1; ++i; } } /* Then the built-in subdirectories that are actually active. */ { struct dl_hwcaps_split_masked sp; _dl_hwcaps_split_masked_init (&sp, _dl_hwcaps_subdirs, bitmask, mask); while (_dl_hwcaps_split_masked (&sp)) { _dl_hwcaps_priorities[i].name = sp.split.segment; _dl_hwcaps_priorities[i].name_length = sp.split.length; _dl_hwcaps_priorities[i].priority = i + 1; ++i; } } assert (i == total_count); } /* Sort the _dl_hwcaps_priorities array by name. */ static void sort_priorities_by_name (void) { /* Insertion sort. There is no need to link qsort into the dynamic loader for such a short array. */ for (size_t i = 1; i < _dl_hwcaps_priorities_length; ++i) for (size_t j = i; j > 0; --j) { struct dl_hwcaps_priority *previous = _dl_hwcaps_priorities + j - 1; struct dl_hwcaps_priority *current = _dl_hwcaps_priorities + j; /* Bail out if current is greater or equal to the previous value. */ uint32_t to_compare; if (current->name_length < previous->name_length) to_compare = current->name_length; else to_compare = previous->name_length; int cmp = memcmp (current->name, previous->name, to_compare); if (cmp >= 0 || (cmp == 0 && current->name_length >= previous->name_length)) break; /* Swap *previous and *current. */ struct dl_hwcaps_priority tmp = *previous; *previous = *current; *current = tmp; } } /* Return an array of useful/necessary hardware capability names. */ const struct r_strlenpair * _dl_important_hwcaps (const char *glibc_hwcaps_prepend, const char *glibc_hwcaps_mask, size_t *sz, size_t *max_capstrlen) { uint64_t hwcap_mask = GET_HWCAP_MASK(); /* Determine how many important bits are set. */ uint64_t masked = GLRO(dl_hwcap) & hwcap_mask; size_t cnt = GLRO (dl_platform) != NULL; size_t n, m; struct r_strlenpair *result; struct r_strlenpair *rp; char *cp; /* glibc-hwcaps subdirectories. These are exempted from the power set construction below. */ uint32_t hwcaps_subdirs_active = _dl_hwcaps_subdirs_active (); struct hwcaps_counts hwcaps_counts = { 0, }; update_hwcaps_counts (&hwcaps_counts, glibc_hwcaps_prepend, -1, NULL); update_hwcaps_counts (&hwcaps_counts, _dl_hwcaps_subdirs, hwcaps_subdirs_active, glibc_hwcaps_mask); compute_priorities (hwcaps_counts.count, glibc_hwcaps_prepend, hwcaps_subdirs_active, glibc_hwcaps_mask); sort_priorities_by_name (); /* Each hwcaps subdirectory has a GLIBC_HWCAPS_PREFIX string prefix and a "/" suffix once stored in the result. */ size_t total = (hwcaps_counts.count * (strlen (GLIBC_HWCAPS_PREFIX) + 1) + hwcaps_counts.total_length); /* Count the number of bits set in the masked value. */ for (n = 0; (~((1ULL << n) - 1) & masked) != 0; ++n) if ((masked & (1ULL << n)) != 0) ++cnt; /* For TLS enabled builds always add 'tls'. */ ++cnt; /* Create temporary data structure to generate result table. */ struct r_strlenpair temp[cnt]; m = 0; for (n = 0; masked != 0; ++n) if ((masked & (1ULL << n)) != 0) { temp[m].str = _dl_hwcap_string (n); temp[m].len = strlen (temp[m].str); masked ^= 1ULL << n; ++m; } if (GLRO (dl_platform) != NULL) { temp[m].str = GLRO (dl_platform); temp[m].len = GLRO (dl_platformlen); ++m; } temp[m].str = "tls"; temp[m].len = 3; ++m; assert (m == cnt); /* Determine the total size of all strings together. */ if (cnt == 1) total += temp[0].len + 1; else { total += temp[0].len + temp[cnt - 1].len + 2; if (cnt > 2) { total <<= 1; for (n = 1; n + 1 < cnt; ++n) total += temp[n].len + 1; if (cnt > 3 && (cnt >= sizeof (size_t) * 8 || total + (sizeof (*result) << 3) >= (1UL << (sizeof (size_t) * 8 - cnt + 3)))) _dl_signal_error (ENOMEM, NULL, NULL, N_("cannot create capability list")); total <<= cnt - 3; } } *sz = hwcaps_counts.count + (1 << cnt); /* This is the overall result, including both glibc-hwcaps subdirectories and the legacy hwcaps subdirectories using the power set construction. */ struct r_strlenpair *overall_result = malloc (*sz * sizeof (*result) + total); if (overall_result == NULL) _dl_signal_error (ENOMEM, NULL, NULL, N_("cannot create capability list")); /* Fill in the glibc-hwcaps subdirectories. */ { struct copy_hwcaps target; target.next_pair = overall_result; target.next_string = (char *) (overall_result + *sz); copy_hwcaps (&target, glibc_hwcaps_prepend, -1, NULL); copy_hwcaps (&target, _dl_hwcaps_subdirs, hwcaps_subdirs_active, glibc_hwcaps_mask); /* Set up the write target for the power set construction. */ result = target.next_pair; cp = target.next_string; } /* Power set construction begins here. We use a very compressed way to store the various combinations of capability names. */ if (cnt == 1) { result[0].str = cp; result[0].len = temp[0].len + 1; result[1].str = cp; result[1].len = 0; cp = __mempcpy (cp, temp[0].str, temp[0].len); *cp = '/'; if (result[0].len > hwcaps_counts.maximum_length) *max_capstrlen = result[0].len; else *max_capstrlen = hwcaps_counts.maximum_length; return overall_result; } /* Fill in the information. This follows the following scheme (indices from TEMP for four strings): entry #0: 0, 1, 2, 3 binary: 1111 #1: 0, 1, 3 1101 #2: 0, 2, 3 1011 #3: 0, 3 1001 This allows the representation of all possible combinations of capability names in the string. First generate the strings. */ result[1].str = result[0].str = cp; #define add(idx) \ cp = __mempcpy (__mempcpy (cp, temp[idx].str, temp[idx].len), "/", 1); if (cnt == 2) { add (1); add (0); } else { n = 1 << (cnt - 1); do { n -= 2; /* We always add the last string. */ add (cnt - 1); /* Add the strings which have the bit set in N. */ for (m = cnt - 2; m > 0; --m) if ((n & (1 << m)) != 0) add (m); /* Always add the first string. */ add (0); } while (n != 0); } #undef add /* Now we are ready to install the string pointers and length. */ for (n = 0; n < (1UL << cnt); ++n) result[n].len = 0; n = cnt; do { size_t mask = 1 << --n; rp = result; for (m = 1 << cnt; m > 0; ++rp) if ((--m & mask) != 0) rp->len += temp[n].len + 1; } while (n != 0); /* The first half of the strings all include the first string. */ n = (1 << cnt) - 2; rp = &result[2]; while (n != (1UL << (cnt - 1))) { if ((--n & 1) != 0) rp[0].str = rp[-2].str + rp[-2].len; else rp[0].str = rp[-1].str; ++rp; } /* The second half starts right after the first part of the string of the corresponding entry in the first half. */ do { rp[0].str = rp[-(1 << (cnt - 1))].str + temp[cnt - 1].len + 1; ++rp; } while (--n != 0); /* The maximum string length. */ if (result[0].len > hwcaps_counts.maximum_length) *max_capstrlen = result[0].len; else *max_capstrlen = hwcaps_counts.maximum_length; return overall_result; }