/*
* UFC-crypt: ultra fast crypt(3) implementation
*
* Copyright (C) 1991-2014 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; see the file COPYING.LIB. If not,
* see .
*
* @(#)crypt_util.c 2.56 12/20/96
*
* Support routines
*
*/
#ifdef DEBUG
#include
#endif
#include
#include
#ifndef STATIC
#define STATIC static
#endif
#ifndef DOS
#include "ufc-crypt.h"
#else
/*
* Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein)
* for DOS patches
*/
#include "pl.h"
#include "ufc.h"
#endif
#include "crypt.h"
#include "crypt-private.h"
/* Prototypes for local functions. */
#ifndef __GNU_LIBRARY__
void _ufc_clearmem (char *start, int cnt);
void _ufc_copymem (char *from, char *to, int cnt);
#endif
#ifdef _UFC_32_
STATIC void shuffle_sb (long32 *k, ufc_long saltbits);
#else
STATIC void shuffle_sb (long64 *k, ufc_long saltbits);
#endif
/*
* Permutation done once on the 56 bit
* key derived from the original 8 byte ASCII key.
*/
static const int pc1[56] = {
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
};
/*
* How much to rotate each 28 bit half of the pc1 permutated
* 56 bit key before using pc2 to give the i' key
*/
static const int rots[16] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
/*
* Permutation giving the key
* of the i' DES round
*/
static const int pc2[48] = {
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};
/*
* The E expansion table which selects
* bits from the 32 bit intermediate result.
*/
static const int esel[48] = {
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
};
/*
* Permutation done on the
* result of sbox lookups
*/
static const int perm32[32] = {
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
};
/*
* The sboxes
*/
static const int sbox[8][4][16]= {
{ { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
{ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
{ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
{ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
},
{ { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
{ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
{ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
{ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
},
{ { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
{ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
{ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
{ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
},
{ { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
{ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
{ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
{ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
},
{ { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
{ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
{ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
{ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
},
{ { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
{ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
{ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
{ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
},
{ { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
{ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
{ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
{ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
},
{ { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
{ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
{ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
{ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
}
};
/*
* This is the initial
* permutation matrix
*/
static const int initial_perm[64] = {
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};
/*
* This is the final
* permutation matrix
*/
static const int final_perm[64] = {
40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
};
#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
static const ufc_long BITMASK[24] = {
0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000,
0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000,
0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008
};
static const unsigned char bytemask[8] = {
0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
};
static const ufc_long longmask[32] = {
0x80000000, 0x40000000, 0x20000000, 0x10000000,
0x08000000, 0x04000000, 0x02000000, 0x01000000,
0x00800000, 0x00400000, 0x00200000, 0x00100000,
0x00080000, 0x00040000, 0x00020000, 0x00010000,
0x00008000, 0x00004000, 0x00002000, 0x00001000,
0x00000800, 0x00000400, 0x00000200, 0x00000100,
0x00000080, 0x00000040, 0x00000020, 0x00000010,
0x00000008, 0x00000004, 0x00000002, 0x00000001
};
/*
* do_pc1: permform pc1 permutation in the key schedule generation.
*
* The first index is the byte number in the 8 byte ASCII key
* - second - - the two 28 bits halfs of the result
* - third - selects the 7 bits actually used of each byte
*
* The result is kept with 28 bit per 32 bit with the 4 most significant
* bits zero.
*/
static ufc_long do_pc1[8][2][128];
/*
* do_pc2: permform pc2 permutation in the key schedule generation.
*
* The first index is the septet number in the two 28 bit intermediate values
* - second - - - septet values
*
* Knowledge of the structure of the pc2 permutation is used.
*
* The result is kept with 28 bit per 32 bit with the 4 most significant
* bits zero.
*/
static ufc_long do_pc2[8][128];
/*
* eperm32tab: do 32 bit permutation and E selection
*
* The first index is the byte number in the 32 bit value to be permuted
* - second - is the value of this byte
* - third - selects the two 32 bit values
*
* The table is used and generated internally in init_des to speed it up
*/
static ufc_long eperm32tab[4][256][2];
/*
* efp: undo an extra e selection and do final
* permutation giving the DES result.
*
* Invoked 6 bit a time on two 48 bit values
* giving two 32 bit longs.
*/
static ufc_long efp[16][64][2];
/* Table with characters for base64 transformation. */
static const char b64t[64] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/*
* For use by the old, non-reentrant routines
* (crypt/encrypt/setkey)
*/
struct crypt_data _ufc_foobar;
#ifdef __GNU_LIBRARY__
#include
__libc_lock_define_initialized (static, _ufc_tables_lock)
#endif
#ifdef DEBUG
void
_ufc_prbits(a, n)
ufc_long *a;
int n;
{
ufc_long i, j, t, tmp;
n /= 8;
for(i = 0; i < n; i++) {
tmp=0;
for(j = 0; j < 8; j++) {
t=8*i+j;
tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0;
}
(void)printf("%02x ",tmp);
}
printf(" ");
}
static void
_ufc_set_bits(v, b)
ufc_long v;
ufc_long *b;
{
ufc_long i;
*b = 0;
for(i = 0; i < 24; i++) {
if(v & longmask[8 + i])
*b |= BITMASK[i];
}
}
#endif
#ifndef __GNU_LIBRARY__
/*
* Silly rewrites of 'bzero'/'memset'. I do so
* because some machines don't have
* bzero and some don't have memset.
*/
void
_ufc_clearmem(start, cnt)
char *start;
int cnt;
{
while(cnt--)
*start++ = '\0';
}
void
_ufc_copymem(from, to, cnt)
char *from, *to;
int cnt;
{
while(cnt--)
*to++ = *from++;
}
#else
#define _ufc_clearmem(start, cnt) memset(start, 0, cnt)
#define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt)
#endif
/* lookup a 6 bit value in sbox */
#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
/*
* Initialize unit - may be invoked directly
* by fcrypt users.
*/
void
__init_des_r(__data)
struct crypt_data * __restrict __data;
{
int comes_from_bit;
int bit, sg;
ufc_long j;
ufc_long mask1, mask2;
int e_inverse[64];
static volatile int small_tables_initialized = 0;
#ifdef _UFC_32_
long32 *sb[4];
sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1;
sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3;
#endif
#ifdef _UFC_64_
long64 *sb[4];
sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1;
sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3;
#endif
if(small_tables_initialized == 0) {
#ifdef __GNU_LIBRARY__
__libc_lock_lock (_ufc_tables_lock);
if(small_tables_initialized)
goto small_tables_done;
#endif
/*
* Create the do_pc1 table used
* to affect pc1 permutation
* when generating keys
*/
_ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1));
for(bit = 0; bit < 56; bit++) {
comes_from_bit = pc1[bit] - 1;
mask1 = bytemask[comes_from_bit % 8 + 1];
mask2 = longmask[bit % 28 + 4];
for(j = 0; j < 128; j++) {
if(j & mask1)
do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
}
}
/*
* Create the do_pc2 table used
* to affect pc2 permutation when
* generating keys
*/
_ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2));
for(bit = 0; bit < 48; bit++) {
comes_from_bit = pc2[bit] - 1;
mask1 = bytemask[comes_from_bit % 7 + 1];
mask2 = BITMASK[bit % 24];
for(j = 0; j < 128; j++) {
if(j & mask1)
do_pc2[comes_from_bit / 7][j] |= mask2;
}
}
/*
* Now generate the table used to do combined
* 32 bit permutation and e expansion
*
* We use it because we have to permute 16384 32 bit
* longs into 48 bit in order to initialize sb.
*
* Looping 48 rounds per permutation becomes
* just too slow...
*
*/
_ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab));
for(bit = 0; bit < 48; bit++) {
ufc_long mask1,comes_from;
comes_from = perm32[esel[bit]-1]-1;
mask1 = bytemask[comes_from % 8];
for(j = 256; j--;) {
if(j & mask1)
eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24];
}
}
/*
* Create an inverse matrix for esel telling
* where to plug out bits if undoing it
*/
for(bit=48; bit--;) {
e_inverse[esel[bit] - 1 ] = bit;
e_inverse[esel[bit] - 1 + 32] = bit + 48;
}
/*
* create efp: the matrix used to
* undo the E expansion and effect final permutation
*/
_ufc_clearmem((char*)efp, (int)sizeof efp);
for(bit = 0; bit < 64; bit++) {
int o_bit, o_long;
ufc_long word_value, mask1, mask2;
int comes_from_f_bit, comes_from_e_bit;
int comes_from_word, bit_within_word;
/* See where bit i belongs in the two 32 bit long's */
o_long = bit / 32; /* 0..1 */
o_bit = bit % 32; /* 0..31 */
/*
* And find a bit in the e permutated value setting this bit.
*
* Note: the e selection may have selected the same bit several
* times. By the initialization of e_inverse, we only look
* for one specific instance.
*/
comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
comes_from_word = comes_from_e_bit / 6; /* 0..15 */
bit_within_word = comes_from_e_bit % 6; /* 0..5 */
mask1 = longmask[bit_within_word + 26];
mask2 = longmask[o_bit];
for(word_value = 64; word_value--;) {
if(word_value & mask1)
efp[comes_from_word][word_value][o_long] |= mask2;
}
}
atomic_write_barrier ();
small_tables_initialized = 1;
#ifdef __GNU_LIBRARY__
small_tables_done:
__libc_lock_unlock(_ufc_tables_lock);
#endif
} else
atomic_read_barrier ();
/*
* Create the sb tables:
*
* For each 12 bit segment of an 48 bit intermediate
* result, the sb table precomputes the two 4 bit
* values of the sbox lookups done with the two 6
* bit halves, shifts them to their proper place,
* sends them through perm32 and finally E expands
* them so that they are ready for the next
* DES round.
*
*/
if (__data->sb0 + sizeof (__data->sb0) == __data->sb1
&& __data->sb1 + sizeof (__data->sb1) == __data->sb2
&& __data->sb2 + sizeof (__data->sb2) == __data->sb3)
_ufc_clearmem(__data->sb0,
(int)sizeof(__data->sb0)
+ (int)sizeof(__data->sb1)
+ (int)sizeof(__data->sb2)
+ (int)sizeof(__data->sb3));
else {
_ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0));
_ufc_clearmem(__data->sb1, (int)sizeof(__data->sb1));
_ufc_clearmem(__data->sb2, (int)sizeof(__data->sb2));
_ufc_clearmem(__data->sb3, (int)sizeof(__data->sb3));
}
for(sg = 0; sg < 4; sg++) {
int j1, j2;
int s1, s2;
for(j1 = 0; j1 < 64; j1++) {
s1 = s_lookup(2 * sg, j1);
for(j2 = 0; j2 < 64; j2++) {
ufc_long to_permute, inx;
s2 = s_lookup(2 * sg + 1, j2);
to_permute = (((ufc_long)s1 << 4) |
(ufc_long)s2) << (24 - 8 * (ufc_long)sg);
#ifdef _UFC_32_
inx = ((j1 << 6) | j2) << 1;
sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
#endif
#ifdef _UFC_64_
inx = ((j1 << 6) | j2);
sb[sg][inx] =
((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
(long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
sb[sg][inx] |=
((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
(long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
sb[sg][inx] |=
((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
(long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
sb[sg][inx] |=
((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
(long64)eperm32tab[3][(to_permute) & 0xff][1];
#endif
}
}
}
__data->current_saltbits = 0;
__data->current_salt[0] = 0;
__data->current_salt[1] = 0;
__data->initialized++;
}
void
__init_des (void)
{
__init_des_r(&_ufc_foobar);
}
/*
* Process the elements of the sb table permuting the
* bits swapped in the expansion by the current salt.
*/
#ifdef _UFC_32_
STATIC void
shuffle_sb(k, saltbits)
long32 *k;
ufc_long saltbits;
{
ufc_long j;
long32 x;
for(j=4096; j--;) {
x = (k[0] ^ k[1]) & (long32)saltbits;
*k++ ^= x;
*k++ ^= x;
}
}
#endif
#ifdef _UFC_64_
STATIC void
shuffle_sb(k, saltbits)
long64 *k;
ufc_long saltbits;
{
ufc_long j;
long64 x;
for(j=4096; j--;) {
x = ((*k >> 32) ^ *k) & (long64)saltbits;
*k++ ^= (x << 32) | x;
}
}
#endif
/*
* Return false iff C is in the specified alphabet for crypt salt.
*/
static bool
bad_for_salt (char c)
{
switch (c)
{
case '0' ... '9':
case 'A' ... 'Z':
case 'a' ... 'z':
case '.': case '/':
return false;
default:
return true;
}
}
/*
* Setup the unit for a new salt
* Hopefully we'll not see a new salt in each crypt call.
* Return false if an unexpected character was found in s[0] or s[1].
*/
bool
_ufc_setup_salt_r(s, __data)
const char *s;
struct crypt_data * __restrict __data;
{
ufc_long i, j, saltbits;
char s0, s1;
if(__data->initialized == 0)
__init_des_r(__data);
s0 = s[0];
if(bad_for_salt (s0))
return false;
s1 = s[1];
if(bad_for_salt (s1))
return false;
if(s0 == __data->current_salt[0] && s1 == __data->current_salt[1])
return true;
__data->current_salt[0] = s0;
__data->current_salt[1] = s1;
/*
* This is the only crypt change to DES:
* entries are swapped in the expansion table
* according to the bits set in the salt.
*/
saltbits = 0;
for(i = 0; i < 2; i++) {
long c=ascii_to_bin(s[i]);
for(j = 0; j < 6; j++) {
if((c >> j) & 0x1)
saltbits |= BITMASK[6 * i + j];
}
}
/*
* Permute the sb table values
* to reflect the changed e
* selection table
*/
#ifdef _UFC_32_
#define LONGG long32*
#endif
#ifdef _UFC_64_
#define LONGG long64*
#endif
shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits);
shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits);
shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits);
shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits);
__data->current_saltbits = saltbits;
return true;
}
void
_ufc_mk_keytab_r(key, __data)
const char *key;
struct crypt_data * __restrict __data;
{
ufc_long v1, v2, *k1;
int i;
#ifdef _UFC_32_
long32 v, *k2;
k2 = (long32*)__data->keysched;
#endif
#ifdef _UFC_64_
long64 v, *k2;
k2 = (long64*)__data->keysched;
#endif
v1 = v2 = 0; k1 = &do_pc1[0][0][0];
for(i = 8; i--;) {
v1 |= k1[*key & 0x7f]; k1 += 128;
v2 |= k1[*key++ & 0x7f]; k1 += 128;
}
for(i = 0; i < 16; i++) {
k1 = &do_pc2[0][0];
v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
v |= k1[(v1 ) & 0x7f]; k1 += 128;
#ifdef _UFC_32_
*k2++ = (v | 0x00008000);
v = 0;
#endif
#ifdef _UFC_64_
v = (v << 32);
#endif
v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
v |= k1[(v2 ) & 0x7f];
#ifdef _UFC_32_
*k2++ = (v | 0x00008000);
#endif
#ifdef _UFC_64_
*k2++ = v | 0x0000800000008000l;
#endif
}
__data->direction = 0;
}
/*
* Undo an extra E selection and do final permutations
*/
void
_ufc_dofinalperm_r(res, __data)
ufc_long *res;
struct crypt_data * __restrict __data;
{
ufc_long v1, v2, x;
ufc_long l1,l2,r1,r2;
l1 = res[0]; l2 = res[1];
r1 = res[2]; r2 = res[3];
x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x;
x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x;
v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
res[0] = v1; res[1] = v2;
}
/*
* crypt only: convert from 64 bit to 11 bit ASCII
* prefixing with the salt
*/
void
_ufc_output_conversion_r(v1, v2, salt, __data)
ufc_long v1, v2;
const char *salt;
struct crypt_data * __restrict __data;
{
int i, s, shf;
__data->crypt_3_buf[0] = salt[0];
__data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0];
for(i = 0; i < 5; i++) {
shf = (26 - 6 * i); /* to cope with MSC compiler bug */
__data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
}
s = (v2 & 0xf) << 2;
v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
for(i = 5; i < 10; i++) {
shf = (56 - 6 * i);
__data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
}
__data->crypt_3_buf[12] = bin_to_ascii(s);
__data->crypt_3_buf[13] = 0;
}
/*
* UNIX encrypt function. Takes a bitvector
* represented by one byte per bit and
* encrypt/decrypt according to edflag
*/
void
__encrypt_r(__block, __edflag, __data)
char *__block;
int __edflag;
struct crypt_data * __restrict __data;
{
ufc_long l1, l2, r1, r2, res[4];
int i;
#ifdef _UFC_32_
long32 *kt;
kt = (long32*)__data->keysched;
#endif
#ifdef _UFC_64_
long64 *kt;
kt = (long64*)__data->keysched;
#endif
/*
* Undo any salt changes to E expansion
*/
_ufc_setup_salt_r("..", __data);
/*
* Reverse key table if
* changing operation (encrypt/decrypt)
*/
if((__edflag == 0) != (__data->direction == 0)) {
for(i = 0; i < 8; i++) {
#ifdef _UFC_32_
long32 x;
x = kt[2 * (15-i)];
kt[2 * (15-i)] = kt[2 * i];
kt[2 * i] = x;
x = kt[2 * (15-i) + 1];
kt[2 * (15-i) + 1] = kt[2 * i + 1];
kt[2 * i + 1] = x;
#endif
#ifdef _UFC_64_
long64 x;
x = kt[15-i];
kt[15-i] = kt[i];
kt[i] = x;
#endif
}
__data->direction = __edflag;
}
/*
* Do initial permutation + E expansion
*/
i = 0;
for(l1 = 0; i < 24; i++) {
if(__block[initial_perm[esel[i]-1]-1])
l1 |= BITMASK[i];
}
for(l2 = 0; i < 48; i++) {
if(__block[initial_perm[esel[i]-1]-1])
l2 |= BITMASK[i-24];
}
i = 0;
for(r1 = 0; i < 24; i++) {
if(__block[initial_perm[esel[i]-1+32]-1])
r1 |= BITMASK[i];
}
for(r2 = 0; i < 48; i++) {
if(__block[initial_perm[esel[i]-1+32]-1])
r2 |= BITMASK[i-24];
}
/*
* Do DES inner loops + final conversion
*/
res[0] = l1; res[1] = l2;
res[2] = r1; res[3] = r2;
_ufc_doit_r((ufc_long)1, __data, &res[0]);
/*
* Do final permutations
*/
_ufc_dofinalperm_r(res, __data);
/*
* And convert to bit array
*/
l1 = res[0]; r1 = res[1];
for(i = 0; i < 32; i++) {
*__block++ = (l1 & longmask[i]) != 0;
}
for(i = 0; i < 32; i++) {
*__block++ = (r1 & longmask[i]) != 0;
}
}
weak_alias (__encrypt_r, encrypt_r)
void
encrypt(__block, __edflag)
char *__block;
int __edflag;
{
__encrypt_r(__block, __edflag, &_ufc_foobar);
}
/*
* UNIX setkey function. Take a 64 bit DES
* key and setup the machinery.
*/
void
__setkey_r(__key, __data)
const char *__key;
struct crypt_data * __restrict __data;
{
int i,j;
unsigned char c;
unsigned char ktab[8];
_ufc_setup_salt_r("..", __data); /* be sure we're initialized */
for(i = 0; i < 8; i++) {
for(j = 0, c = 0; j < 8; j++)
c = c << 1 | *__key++;
ktab[i] = c >> 1;
}
_ufc_mk_keytab_r((char *) ktab, __data);
}
weak_alias (__setkey_r, setkey_r)
void
setkey(__key)
const char *__key;
{
__setkey_r(__key, &_ufc_foobar);
}
void
__b64_from_24bit (char **cp, int *buflen,
unsigned int b2, unsigned int b1, unsigned int b0,
int n)
{
unsigned int w = (b2 << 16) | (b1 << 8) | b0;
while (n-- > 0 && (*buflen) > 0)
{
*(*cp)++ = b64t[w & 0x3f];
--(*buflen);
w >>= 6;
}
}