From a334319f6530564d22e775935d9c91663623a1b4 Mon Sep 17 00:00:00 2001 From: Ulrich Drepper Date: Wed, 22 Dec 2004 20:10:10 +0000 Subject: (CFLAGS-tst-align.c): Add -mpreferred-stack-boundary=4. --- sysdeps/ieee754/ldbl-128ibm/e_expl.c | 257 ----------------------------------- 1 file changed, 257 deletions(-) delete mode 100644 sysdeps/ieee754/ldbl-128ibm/e_expl.c (limited to 'sysdeps/ieee754/ldbl-128ibm/e_expl.c') diff --git a/sysdeps/ieee754/ldbl-128ibm/e_expl.c b/sysdeps/ieee754/ldbl-128ibm/e_expl.c deleted file mode 100644 index 3c4088f75f..0000000000 --- a/sysdeps/ieee754/ldbl-128ibm/e_expl.c +++ /dev/null @@ -1,257 +0,0 @@ -/* Quad-precision floating point e^x. - Copyright (C) 1999,2004,2006 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek - Partly based on double-precision code - by Geoffrey Keating - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 USA. */ - -/* The basic design here is from - Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with - Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991, - pp. 410-423. - - We work with number pairs where the first number is the high part and - the second one is the low part. Arithmetic with the high part numbers must - be exact, without any roundoff errors. - - The input value, X, is written as - X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x - - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl - - where: - - n is an integer, 16384 >= n >= -16495; - - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205 - - t1 is an integer, 89 >= t1 >= -89 - - t2 is an integer, 65 >= t2 >= -65 - - |arg1[t1]-t1/256.0| < 2^-53 - - |arg2[t2]-t2/32768.0| < 2^-53 - - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53 - - Then e^x is approximated as - - e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1) - + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1) - * p (x + xl + n * ln(2)_1)) - where: - - p(x) is a polynomial approximating e(x)-1 - - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table - - e^(arg2[t2]_0 + arg2[t2]_1) likewise - - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1. - - If it happens that n_1 == 0 (this is the usual case), that multiplication - is omitted. - */ - -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif -#include -#include -#include -#include -#include -#include -#include - -static const long double C[] = { -/* Smallest integer x for which e^x overflows. */ -#define himark C[0] - 709.08956571282405153382846025171462914L, - -/* Largest integer x for which e^x underflows. */ -#define lomark C[1] --709.08956571282405153382846025171462914L, - -/* 3x2^96 */ -#define THREEp96 C[2] - 59421121885698253195157962752.0L, - -/* 3x2^103 */ -#define THREEp103 C[3] - 30423614405477505635920876929024.0L, - -/* 3x2^111 */ -#define THREEp111 C[4] - 7788445287802241442795744493830144.0L, - -/* 1/ln(2) */ -#define M_1_LN2 C[5] - 1.44269504088896340735992468100189204L, - -/* first 93 bits of ln(2) */ -#define M_LN2_0 C[6] - 0.693147180559945309417232121457981864L, - -/* ln2_0 - ln(2) */ -#define M_LN2_1 C[7] --1.94704509238074995158795957333327386E-31L, - -/* very small number */ -#define TINY C[8] - 1.0e-308L, - -/* 2^16383 */ -#define TWO1023 C[9] - 8.988465674311579538646525953945123668E+307L, - -/* 256 */ -#define TWO8 C[10] - 256.0L, - -/* 32768 */ -#define TWO15 C[11] - 32768.0L, - -/* Chebyshev polynom coeficients for (exp(x)-1)/x */ -#define P1 C[12] -#define P2 C[13] -#define P3 C[14] -#define P4 C[15] -#define P5 C[16] -#define P6 C[17] - 0.5L, - 1.66666666666666666666666666666666683E-01L, - 4.16666666666666666666654902320001674E-02L, - 8.33333333333333333333314659767198461E-03L, - 1.38888888889899438565058018857254025E-03L, - 1.98412698413981650382436541785404286E-04L, -}; - -long double -__ieee754_expl (long double x) -{ - /* Check for usual case. */ - if (isless (x, himark) && isgreater (x, lomark)) - { - int tval1, tval2, unsafe, n_i, exponent2; - long double x22, n, result, xl; - union ibm_extended_long_double ex2_u, scale_u; - fenv_t oldenv; - - feholdexcept (&oldenv); -#ifdef FE_TONEAREST - fesetround (FE_TONEAREST); -#endif - - n = roundl(x*M_1_LN2); - x = x-n*M_LN2_0; - xl = n*M_LN2_1; - - tval1 = roundl(x*TWO8); - x -= __expl_table[T_EXPL_ARG1+2*tval1]; - xl -= __expl_table[T_EXPL_ARG1+2*tval1+1]; - - tval2 = roundl(x*TWO15); - x -= __expl_table[T_EXPL_ARG2+2*tval2]; - xl -= __expl_table[T_EXPL_ARG2+2*tval2+1]; - - x = x + xl; - - /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */ - ex2_u.d = __expl_table[T_EXPL_RES1 + tval1] - * __expl_table[T_EXPL_RES2 + tval2]; - n_i = (int)n; - /* 'unsafe' is 1 iff n_1 != 0. */ - unsafe = fabsl(n_i) >= -LDBL_MIN_EXP - 1; - ex2_u.ieee.exponent += n_i >> unsafe; - /* Fortunately, there are no subnormal lowpart doubles in - __expl_table, only normal values and zeros. - But after scaling it can be subnormal. */ - exponent2 = ex2_u.ieee.exponent2 + (n_i >> unsafe); - if (ex2_u.ieee.exponent2 == 0) - /* assert ((ex2_u.ieee.mantissa2|ex2_u.ieee.mantissa3) == 0) */; - else if (exponent2 > 0) - ex2_u.ieee.exponent2 = exponent2; - else if (exponent2 <= -54) - { - ex2_u.ieee.exponent2 = 0; - ex2_u.ieee.mantissa2 = 0; - ex2_u.ieee.mantissa3 = 0; - } - else - { - static const double - two54 = 1.80143985094819840000e+16, /* 4350000000000000 */ - twom54 = 5.55111512312578270212e-17; /* 3C90000000000000 */ - ex2_u.dd[1] *= two54; - ex2_u.ieee.exponent2 += n_i >> unsafe; - ex2_u.dd[1] *= twom54; - } - - /* Compute scale = 2^n_1. */ - scale_u.d = 1.0L; - scale_u.ieee.exponent += n_i - (n_i >> unsafe); - - /* Approximate e^x2 - 1, using a seventh-degree polynomial, - with maximum error in [-2^-16-2^-53,2^-16+2^-53] - less than 4.8e-39. */ - x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6))))); - - /* Return result. */ - fesetenv (&oldenv); - - result = x22 * ex2_u.d + ex2_u.d; - - /* Now we can test whether the result is ultimate or if we are unsure. - In the later case we should probably call a mpn based routine to give - the ultimate result. - Empirically, this routine is already ultimate in about 99.9986% of - cases, the test below for the round to nearest case will be false - in ~ 99.9963% of cases. - Without proc2 routine maximum error which has been seen is - 0.5000262 ulp. - - union ieee854_long_double ex3_u; - - #ifdef FE_TONEAREST - fesetround (FE_TONEAREST); - #endif - ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d; - ex2_u.d = result; - ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS - - ex2_u.ieee.exponent; - n_i = abs (ex3_u.d); - n_i = (n_i + 1) / 2; - fesetenv (&oldenv); - #ifdef FE_TONEAREST - if (fegetround () == FE_TONEAREST) - n_i -= 0x4000; - #endif - if (!n_i) { - return __ieee754_expl_proc2 (origx); - } - */ - if (!unsafe) - return result; - else - return result * scale_u.d; - } - /* Exceptional cases: */ - else if (isless (x, himark)) - { - if (__isinfl (x)) - /* e^-inf == 0, with no error. */ - return 0; - else - /* Underflow */ - return TINY * TINY; - } - else - /* Return x, if x is a NaN or Inf; or overflow, otherwise. */ - return TWO1023*x; -} -- cgit 1.4.1