| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
Intel MPX failed to gain wide adoption and has been deprecated for a
while. GCC 9.1 removed Intel MPX support. Linux kernel removed MPX in
2019.
This patch removes the support code from the dynamic loader.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
No bug.
This change adds a new macro ENTRY_P2ALIGN which takes a second
argument, log2 of the desired function alignment.
The old ENTRY(name) macro is just ENTRY_P2ALIGN(name, 4) so this
doesn't affect any existing functionality.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
|
|
|
|
|
| |
Signed-off-by: Cristian Rodríguez <crrodriguez@opensuse.org>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When performing symbol lookup for references in executable without
indirect external access:
1. Disallow copy relocations in executable against protected data symbols
in a shared object with indirect external access.
2. Disallow non-zero symbol values of undefined function symbols in
executable, which are used as the function pointer, against protected
function symbols in a shared object with indirect external access.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. Add GNU_PROPERTY_1_NEEDED:
#define GNU_PROPERTY_1_NEEDED GNU_PROPERTY_UINT32_OR_LO
to indicate the needed properties by the object file.
2. Add GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS:
#define GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS (1U << 0)
to indicate that the object file requires canonical function pointers and
cannot be used with copy relocation.
3. Scan GNU_PROPERTY_1_NEEDED property and store it in l_1_needed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Both new HWCAPs were introduced in these kernel commits:
- 7e8403ecaf884f307b627f3c371475913dd29292
"s390: add HWCAP_S390_PCI_MIO to ELF hwcaps"
- 7e82523f2583e9813e4109df3656707162541297
"s390/hwcaps: make sie capability regular hwcap"
Also note that the kernel commit 511ad531afd4090625def4d9aba1f5227bd44b8e
"s390/hwcaps: shorten HWCAP defines" has shortened the prefix of the macros
from "HWCAP_S390_" to "HWCAP_". For compatibility reasons, we do not
change the prefix in public glibc header file.
|
|
|
|
|
|
|
|
|
|
|
| |
Update after
commit 6bbf7298323bf31bc43494b2201465a449778e10.
Fixed inaccuracy of j0f (BZ #28185)
See also e.g.
commit c75b106145c30e6c7bcf87f384a5c68ce56406e9
aarch64: update libm test ulps
|
|
|
|
|
| |
Update after commit 6bbf7298323bf31bc43494b2201465a449778e10
(Fixed inaccuracy of j0f (BZ #28185)).
|
|
|
|
|
|
| |
The sparc32 misses support for support done by 4e8521333bea6.
Checked on sparcv9-linux-gnu.
|
|
|
|
|
|
|
| |
Update after
commit 6bbf7298323bf31bc43494b2201465a449778e10.
Fixed inaccuracy of j0f (BZ #28185)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The largest errors over the full binary32 range are after this
patch (on x86_64):
RNDN: libm wrong by up to 9.00e+00 ulp(s) [9] for x=0x1.04c39cp+6
RNDZ: libm wrong by up to 9.00e+00 ulp(s) [9] for x=0x1.04c39cp+6
RNDU: libm wrong by up to 9.00e+00 ulp(s) [9] for x=0x1.04c39cp+6
RNDD: libm wrong by up to 8.98e+00 ulp(s) [9] for x=0x1.4b7066p+7
Inputs that were yielding huge errors have been added to "make check".
Reviewed-by: Adhemeral Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The fix for bug 19329 caused a regression such that pthread_create can
deadlock when concurrent ctors from dlopen are waiting for it to finish.
Use a new GL(dl_load_tls_lock) in pthread_create that is not taken
around ctors in dlopen.
The new lock is also used in __tls_get_addr instead of GL(dl_load_lock).
The new lock is held in _dl_open_worker and _dl_close_worker around
most of the logic before/after the init/fini routines. When init/fini
routines are running then TLS is in a consistent, usable state.
In _dl_open_worker the new lock requires catching and reraising dlopen
failures that happen in the critical section.
The new lock is reinitialized in a fork child, to keep the existing
behaviour and it is kept recursive in case malloc interposition or TLS
access from signal handlers can retake it. It is not obvious if this
is necessary or helps, but avoids changing the preexisting behaviour.
The new lock may be more appropriate for dl_iterate_phdr too than
GL(dl_load_write_lock), since TLS state of an incompletely loaded
module may be accessed. If the new lock can replace the old one,
that can be a separate change.
Fixes bug 28357.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The choice between the kill vs tgkill system calls is not just about
the TID reuse race, but also about whether the signal is sent to the
whole process (and any thread in it) or to a specific thread.
This was caught by the openposix test suite:
LTP: openposix test suite - FAIL: SIGUSR1 is member of new thread pendingset.
<https://gitlab.com/cki-project/kernel-tests/-/issues/764>
Fixes commit 526c3cf11ee9367344b6b15d669e4c3cb461a2be ("nptl: Fix race
between pthread_kill and thread exit (bug 12889)").
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Linux added FUTEX_LOCK_PI2 to support clock selection
(commit bf22a6976897977b0a3f1aeba6823c959fc4fdae). With the new
flag we can now proper support CLOCK_MONOTONIC for
pthread_mutex_clocklock with Priority Inheritance. If kernel
does not support, EINVAL is returned instead.
The difference is the futex operation will be issued and the kernel
will advertise the missing support (instead of hard-code error
return).
Checked on x86_64-linux-gnu and i686-linux-gnu on Linux 5.14, 5.11,
and 4.15.
|
|
|
|
|
|
|
|
|
|
|
| |
This patch uses the new futex PI operation provided by Linux v5.14
when it is required.
The futex_lock_pi64() is moved to futex-internal.c (since it used on
two different places and its code size might be large depending of the
kernel configuration) and clockid is added as an argument.
Co-authored-by: Kurt Kanzenbach <kurt@linutronix.de>
|
|
|
|
|
|
|
|
|
|
| |
Linux v5.14.0 introduced a new futex operation called FUTEX_LOCK_PI2.
This kernel feature can be used to implement
pthread_mutex_clocklock(MONOTONIC)/PI.
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recent versions of binutils (with commit
b25f942e18d6ecd7ec3e2d2e9930eb4f996c258a) stopped preserving "sticky"
options across a base `.machine` directive, nullifying the use of
passing "-many" through GCC to the assembler. As a result, some
instructions which were recognized even under older, more stringent
`.machine` directives become unrecognized instructions in that
context.
In `sysdeps/powerpc/tst-set_ppr.c`, the use of the `mfppr32` extended
mnemonic became unrecognized, as the default compilation with GCC for
32bit powerpc adds a `.machine ppc` in the resulting assembly, so the
command line option `-Wa,-many` is essentially ignored, and the ISA 2.06
instructions and mnemonics, like `mfppr32`, are unrecognized.
The compilation of `sysdeps/powerpc/tst-set_ppr.c` fails with:
Error: unrecognized opcode: `mfppr32'
Add appropriate `.machine` directives in the assembly to bracket the
`mfppr32` instruction.
Part of a 2019 fix (commit 9250e6610fdb0f3a6f238d2813e319a41fb7a810) to
the above test's Makefile to add `-many` to the compilation when GCC
itself stopped passing `-many` to the assember no longer has any effect,
so remove that.
Reported-by: Joseph Myers <joseph@codesourcery.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
C2X adds new <math.h> functions for floating-point maximum and
minimum, corresponding to the new operations that were added in IEEE
754-2019 because of concerns about the old operations not being
associative in the presence of signaling NaNs. fmaximum and fminimum
handle NaNs like most <math.h> functions (any NaN argument means the
result is a quiet NaN). fmaximum_num and fminimum_num handle both
quiet and signaling NaNs the way fmax and fmin handle quiet NaNs (if
one argument is a number and the other is a NaN, return the number),
but still raise "invalid" for a signaling NaN argument, making them
exceptions to the normal rule that a function with a floating-point
result raising "invalid" also returns a quiet NaN. fmaximum_mag,
fminimum_mag, fmaximum_mag_num and fminimum_mag_num are corresponding
functions returning the argument with greatest or least absolute
value. All these functions also treat +0 as greater than -0. There
are also corresponding <tgmath.h> type-generic macros.
Add these functions to glibc. The implementations use type-generic
templates based on those for fmax, fmin, fmaxmag and fminmag, and test
inputs are based on those for those functions with appropriate
adjustments to the expected results. The RISC-V maintainers might
wish to add optimized versions of fmaximum_num and fminimum_num (for
float and double), since RISC-V (F extension version 2.2 and later)
provides instructions corresponding to those functions - though it
might be at least as useful to add architecture-independent built-in
functions to GCC and teach the RISC-V back end to expand those
functions inline, which is what you generally want for functions that
can be implemented with a single instruction.
Tested for x86_64 and x86, and with build-many-glibcs.py.
|
|
|
|
|
|
|
|
|
|
|
|
| |
AF_NETLINK support is not quite optional on modern Linux systems
anymore, so it is likely that the first attempt will always succeed.
Consequently, there is no need to cache the result. Keep AF_UNIX
and the Internet address families as a fallback, for the rare case
that AF_NETLINK is missing. The other address families previously
probed are totally obsolete be now, so remove them.
Use this simplified version as the generic implementation, disabling
Netlink support as needed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When running this test on the OpenRISC port I am working on this test
fails with a timeout. The test passes when being straced or debugged.
Looking at the code there seems to be a race condition in that:
1 main thread: calls xpthread_cancel
2 sub thread : receives cancel signal
3 sub thread : cleanup routine waits on barrier
4 main thread: re-inits barrier
5 main thread: waits on barrier
After getting to 5 the main thread and sub thread wait forever as the 2
barriers are no longer the same.
Removing the barrier re-init seems to fix this issue. Also, the barrier
does not need to be reinitialized as that is done by default.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
| |
Reviewed-by: Raphael M Zinsly <rzinsly@linux.ibm.com>
|
|
|
|
|
|
|
|
| |
Although it provide an alternate implementation that communicates
using pipe() instead of shared memory, no port uses and it adds extra
burden for posix_spawn() extensions.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
|
|
|
|
|
| |
Don't reference __GI_memmove, __GI_memset, __GI_memcpy, __divdi3_internal,
__udivdi3_internal and __moddi3_internal in libc_nonshared.a.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The use of sched_getaffinity on get_nproc and
sysconf (_SC_NPROCESSORS_ONLN) done in 903bc7dcc2acafc40 (BZ #27645)
breaks the top command in common hypervisor configurations and also
other monitoring tools.
The main issue using sched_getaffinity changed the symbols semantic
from system-wide scope of online CPUs to per-process one (which can
be changed with kernel cpusets or book parameters in VM).
This patch reverts mostly of the 903bc7dcc2acafc40, with the
exceptions:
* No more cached values and atomic updates, since they are inherent
racy.
* No /proc/cpuinfo fallback, since /proc/stat is already used and
it would require to revert more arch-specific code.
* The alloca is replace with a static buffer of 1024 bytes.
So the implementation first consult the sysfs, and fallbacks to procfs.
Checked on x86_64-linux-gnu.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch simplifies the memory allocation code and uses the sched
routines instead of reimplement it. This still uses a stack
allocation buffer, so it can be used on malloc initialization code.
Linux currently supports at maximum of 4096 cpus for most architectures:
$ find -iname Kconfig | xargs git grep -A10 -w NR_CPUS | grep -w range
arch/alpha/Kconfig- range 2 32
arch/arc/Kconfig- range 2 4096
arch/arm/Kconfig- range 2 16 if DEBUG_KMAP_LOCAL
arch/arm/Kconfig- range 2 32 if !DEBUG_KMAP_LOCAL
arch/arm64/Kconfig- range 2 4096
arch/csky/Kconfig- range 2 32
arch/hexagon/Kconfig- range 2 6 if SMP
arch/ia64/Kconfig- range 2 4096
arch/mips/Kconfig- range 2 256
arch/openrisc/Kconfig- range 2 32
arch/parisc/Kconfig- range 2 32
arch/riscv/Kconfig- range 2 32
arch/s390/Kconfig- range 2 512
arch/sh/Kconfig- range 2 32
arch/sparc/Kconfig- range 2 32 if SPARC32
arch/sparc/Kconfig- range 2 4096 if SPARC64
arch/um/Kconfig- range 1 1
arch/x86/Kconfig-# [NR_CPUS_RANGE_BEGIN ... NR_CPUS_RANGE_END] range.
arch/x86/Kconfig- range NR_CPUS_RANGE_BEGIN NR_CPUS_RANGE_END
arch/xtensa/Kconfig- range 2 32
With x86 supporting 8192:
arch/x86/Kconfig
976 config NR_CPUS_RANGE_END
977 int
978 depends on X86_64
979 default 8192 if SMP && CPUMASK_OFFSTACK
980 default 512 if SMP && !CPUMASK_OFFSTACK
981 default 1 if !SMP
So using a maximum of 32k cpu should cover all cases (and I would
expect once we start to have many more CPUs that Linux would provide
a more straightforward way to query for such information).
A test is added to check if sched_getaffinity can successfully return
with large buffers.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
This is an internal function meant to return the number of avaliable
processor where the process can scheduled, different than the
__get_nprocs which returns a the system available online CPU.
The Linux implementation currently only calls __get_nprocs(), which
in tuns calls sched_getaffinity.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
|
|
|
|
| |
so that if a segfault occurs, the handler can run fine.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turns out the __SSE2_MATH__ conditional in sysdeps/x86/fpu/s_ffma.c
does not cover all cases where the x86 fenv_private.h macros might
manipulate one of the SSE and 387 floating-point state, while the
actual fma implementation uses the other. Specifically, in the 32-bit
case, with a compiler not defaulting to -mfpmath=sse, but testing on a
processor with hardware FMA support, the multiarch fma function
implementations will end up using SSE, while the fenv_private.h macros
will use the 387 state for double. Change the conditional to use the
default macros rather than the optimized ones in all cases except when
the compiler inlines an fma instruction (in which case, since all
those instructions are SSE instructions and -mfpmath=sse must be in
effect for them to be inlined, the optimized macros will only use the
SSE state and it's OK for them to only use the SSE state).
Tested for x86_64 and x86. H.J. reports in
<https://sourceware.org/pipermail/libc-alpha/2021-September/131367.html>
that it fixes the problems he observed.
|
|
|
|
| |
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
| |
This drops reliance on _GLOBAL_OFFSET_TABLE_[0] being the link-time
address of _DYNAMIC.
The code sequence length does not change.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
| |
This patch disables A64FX memcpy/memmove BTI instruction insertion
unconditionally such as A64FX memset patch [1] for performance.
[1] commit 07b427296b8d59f439144029d9a948f6c1ce0a31
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
|
|
|
|
|
|
|
|
|
| |
Avoid defining f64xfmaf128 twice when building s_fmaf128.c.
This can be reproduced on powerpc64le whenever f128 functions do not
have IFUNC enabled, e.g. using "--with-cpu=power8 --disable-multi-arch", or
when using "-with-cpu=power9".
Fixes: b3f27d8150d4f ("Add narrowing fma functions")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On 32-bit x86 with -mfpmath=sse, and on x86_64 with
--disable-multi-arch, the tests of ffma and its aliases (fma narrowing
from binary64 to binary32) fail. This is probably the issue reported
by H.J. in
<https://sourceware.org/pipermail/libc-alpha/2021-September/131277.html>.
The problem is the use of fenv_private.h macros in the round-to-odd
implementation. Those macros are set up to manipulate only one of the
SSE and 387 floating-point state, whichever is relevant for the type
indicated by the suffix on the macro name. But x86 configurations
sometimes use the ldbl-96 implementation of binary64 fma (that's where
--disable-multi-arch is relevant for x86_64: it causes the ldbl-96
implementation to be used, instead of an IFUNC implementation that
falls back to the dbl-64 version), contrary to the expectations of
those macros for functions operating on double when __SSE2_MATH__ is
defined.
This can be addressed by using the default versions of those macros
(giving x86 its own version of s_ffma.c), as is done for the *f128
macro variants where it depends on the details of how GCC was
configured when building libgcc which floating-point state is affected
by _Float128 arithmetic. The issue only applies when __SSE2_MATH__ is
defined, and doesn't apply when __FP_FAST_FMA is defined (because in
that case, fma will be inlined by the compiler, meaning it's
definitely an SSE operation; for the same reason, this is not an issue
for narrowing sqrt, as hardware sqrt is always inlined in that
implementation for x86), but in other cases it's safest to use the
default versions of the fenv_private.h macros to ensure things work
whichever fma implementation is used.
Tested for x86_64 (with and without --disable-multi-arch) and x86
(with and without -mfpmath=sse).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As part of the fix for bug 12889, signals are blocked during
thread exit, so that application code cannot run on the thread that
is about to exit. This would cause problems if the application
expected signals to be delivered after the signal handler revealed
the thread to still exist, despite pthread_kill can no longer be used
to send signals to it. However, glibc internally uses the SIGSETXID
signal in a way that is incompatible with signal blocking, due to the
way the setxid handshake delays thread exit until the setxid operation
has completed. With a blocked SIGSETXID, the handshake can never
complete, causing a deadlock.
As a band-aid, restore the previous handshake protocol by not blocking
SIGSETXID during thread exit.
The new test sysdeps/pthread/tst-pthread-setuid-loop.c is based on
a downstream test by Martin Osvald.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the narrowing fused multiply-add functions from TS
18661-1 / TS 18661-3 / C2X to glibc's libm: ffma, ffmal, dfmal,
f32fmaf64, f32fmaf32x, f32xfmaf64 for all configurations; f32fmaf64x,
f32fmaf128, f64fmaf64x, f64fmaf128, f32xfmaf64x, f32xfmaf128,
f64xfmaf128 for configurations with _Float64x and _Float128;
__f32fmaieee128 and __f64fmaieee128 aliases in the powerpc64le case
(for calls to ffmal and dfmal when long double is IEEE binary128).
Corresponding tgmath.h macro support is also added.
The changes are mostly similar to those for the other narrowing
functions previously added, especially that for sqrt, so the
description of those generally applies to this patch as well. As with
sqrt, I reused the same test inputs in auto-libm-test-in as for
non-narrowing fma rather than adding extra or separate inputs for
narrowing fma. The tests in libm-test-narrow-fma.inc also follow
those for non-narrowing fma.
The non-narrowing fma has a known bug (bug 6801) that it does not set
errno on errors (overflow, underflow, Inf * 0, Inf - Inf). Rather
than fixing this or having narrowing fma check for errors when
non-narrowing does not (complicating the cases when narrowing fma can
otherwise be an alias for a non-narrowing function), this patch does
not attempt to check for errors from narrowing fma and set errno; the
CHECK_NARROW_FMA macro is still present, but as a placeholder that
does nothing, and this missing errno setting is considered to be
covered by the existing bug rather than needing a separate open bug.
missing-errno annotations are duly added to many of the
auto-libm-test-in test inputs for fma.
This completes adding all the new functions from TS 18661-1 to glibc,
so will be followed by corresponding stdc-predef.h changes to define
__STDC_IEC_60559_BFP__ and __STDC_IEC_60559_COMPLEX__, as the support
for TS 18661-1 will be at a similar level to that for C standard
floating-point facilities up to C11 (pragmas not implemented, but
library functions done). (There are still further changes to be done
to implement changes to the types of fromfp functions from N2548.)
Tested as followed: natively with the full glibc testsuite for x86_64
(GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC
11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32
hard float, mips64 (all three ABIs, both hard and soft float). The
different GCC versions are to cover the different cases in tgmath.h
and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in
glibc headers, GCC 7 has proper _Float* support, GCC 8 adds
__builtin_tgmath).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can't relocate entries in dynamic section if it is readonly:
1. Add a l_ld_readonly field to struct link_map to indicate if dynamic
section is readonly and set it based on p_flags of PT_DYNAMIC segment.
2. Replace DL_RO_DYN_SECTION with dl_relocate_ld to decide if dynamic
section should be relocated.
3. Remove DL_RO_DYN_TEMP_CNT.
4. Don't use a static dynamic section to make readonly dynamic section
in vDSO writable.
5. Remove the temp argument from elf_get_dynamic_info.
This fixes BZ #28340.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
|
|
|
|
|
|
| |
Testing for powerpc shows some of the new narrowing div/mul tests need
XFAILing for IBM long double and some ULPs updates are needed for
those tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As described in bug 28358, the round-to-odd computations used in the
libm functions that round their results to a narrower format can yield
spurious underflow exceptions in the following circumstances: the
narrowing only narrows the precision of the type and not the exponent
range (i.e., it's narrowing _Float128 to _Float64x on x86_64, x86 or
ia64), the architecture does after-rounding tininess detection (which
applies to all those architectures), the result is inexact, tiny
before rounding but not tiny after rounding (with the chosen rounding
mode) for _Float64x (which is possible for narrowing mul, div and fma,
not for narrowing add, sub or sqrt), so the underflow exception
resulting from the toward-zero computation in _Float128 is spurious
for _Float64x.
Fixed by making ROUND_TO_ODD call feclearexcept (FE_UNDERFLOW) in the
problem cases (as indicated by an extra argument to the macro); there
is never any need to preserve underflow exceptions from this part of
the computation, because the conversion of the round-to-odd value to
the narrower type will underflow in exactly the cases in which the
function should raise that exception, but it may be more efficient to
avoid the extra manipulation of the floating-point environment when
not needed.
Tested for x86_64 and x86, and with build-many-glibcs.py.
|
|
|
|
|
|
|
| |
pthread_mutexattr_setrobust_np (bug 28036)
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recent binutils commit b25f942e18d6ecd7ec3e2d2e9930eb4f996c258a
changes the behavior of `.machine` directives to override, rather
than augment, the base CPU. This can result in _reduced_ functionality
when, for example, compiling for default machine "power8", but explicitly
asking for ".machine power5", which loses Altivec instructions.
In tst-ucontext-ppc64-vscr.c, while the instructions provoking the new
error messages are bracketed by ".machine power5", which is ostensibly
Power ISA 2.03 (POWER5), the POWER5 processor did not support the
VSX subset, so these instructions are not recognized as "power5".
Error: unrecognized opcode: `vspltisb'
Error: unrecognized opcode: `vpkuwus'
Error: unrecognized opcode: `mfvscr'
Error: unrecognized opcode: `stvx'
Manually adding the VSX subset via ".machine altivec" is sufficient.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
|
|
|
|
|
|
| |
The fix for bug 19193 breaks some old applications which appear
to use pthread_kill to probe if a thread is still running, something
that is not supported by POSIX.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Glibc does not provide an interface for debugger to access libraries
loaded in multiple namespaces via dlmopen.
The current rtld-debugger interface is described in the file:
elf/rtld-debugger-interface.txt
under the "Standard debugger interface" heading. This interface only
provides access to the first link-map (LM_ID_BASE).
1. Bump r_version to 2 when multiple namespaces are used. This triggers
the GDB bug:
https://sourceware.org/bugzilla/show_bug.cgi?id=28236
2. Add struct r_debug_extended to extend struct r_debug into a linked-list,
where each element correlates to an unique namespace.
3. Initialize the r_debug_extended structure. Bump r_version to 2 for
the new namespace and add the new namespace to the namespace linked list.
4. Add _dl_debug_update to return the address of struct r_debug' of a
namespace.
5. Add a hidden symbol, _r_debug_extended, for struct r_debug_extended.
6. Provide the symbol, _r_debug, with size of struct r_debug, as an alias
of _r_debug_extended, for programs which reference _r_debug.
This fixes BZ #15971.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
|
|
|
|
|
|
|
|
|
| |
All the ports now have THREAD_GSCOPE_IN_TCB set to 1. Remove all
support for !THREAD_GSCOPE_IN_TCB, along with the definition itself.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20210915171110.226187-4-bugaevc@gmail.com>
Reviewed-by: Samuel Thibault <samuel.thibault@ens-lyon.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a new implementation of GSCOPE which largely mirrors its NPTL
counterpart. Same as in NPTL, instead of a global flag shared between
threads, there is now a per-thread GSCOPE flag stored in each thread's
TCB. This makes entering and exiting a GSCOPE faster at the expense of
making THREAD_GSCOPE_WAIT () slower.
The largest win is the elimination of many redundant gsync_wake () RPC
calls; previously, even simplest programs would make dozens of fully
redundant gsync_wake () calls.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20210915171110.226187-3-bugaevc@gmail.com>
Reviewed-by: Samuel Thibault <samuel.thibault@ens-lyon.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The next commit is going to introduce a new implementation of
THREAD_GSCOPE_WAIT which needs to access the list of threads.
Since it must be usable from the dynamic laoder, we have to move
the symbols for the list of threads into the loader.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20210915171110.226187-2-bugaevc@gmail.com>
Reviewed-by: Samuel Thibault <samuel.thibault@ens-lyon.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
include/math.h has a mechanism to redirect internal calls to various
libm functions, that can often be inlined by the compiler, to call
non-exported __* names for those functions in the case when the calls
aren't inlined, with the redirection being disabled when
NO_MATH_REDIRECT. Add fma to the functions to which this mechanism is
applied.
At present, libm-internal fma calls (generally to __builtin_fma*
functions) are only done when it's known the call will be inlined,
with alternative code not relying on an fma operation being used in
the caller otherwise. This patch is in preparation for adding the TS
18661 / C2X narrowing fma functions to glibc; it will be natural for
the narrowing function implementations to call the underlying fma
functions unconditionally, with this either being inlined or resulting
in an __fma* call. (Using two levels of round-to-odd computation like
that, in the case where there isn't an fma hardware instruction, isn't
optimal but is certainly a lot simpler for the initial implementation
than writing different narrowing fma implementations for all the
various pairs of formats.)
Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by the patch (using
<https://sourceware.org/pipermail/libc-alpha/2021-September/130991.html>
to fix installed library stripping in build-many-glibcs.py). Also
tested for x86_64.
|
|
|
|
| |
0 was actually LLL_PRIVATE, so this does not actually change the code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While originally this definition was indeed used to distinguish between
the cases where the GSCOPE flag was stored in TCB or not, it has since
become used as a general way to distinguish between HTL and NPTL.
THREAD_GSCOPE_IN_TCB will be removed in the following commits, as HTL,
which currently is the only port that does not put the flag into TCB,
will get ported to put the GSCOPE flag into the TCB as well. To prepare
for that change, migrate all code that wants to distinguish between HTL
and NPTL to use PTHREAD_IN_LIBC instead, which is a better choice since
the distinction mostly has to do with whether libc has access to the
list of thread structures and therefore can initialize thread-local
storage.
The parts of code that actually depend on whether the GSCOPE flag is in
TCB are left unchanged.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20210907133325.255690-2-bugaevc@gmail.com>
Reviewed-by: Samuel Thibault <samuel.thibault@ens-lyon.org>
|